scholarly journals Products of Geck-Rouquier conjugacy classes and the Hecke algebra of composed permutations

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Pierre-Loïc Méliot

International audience We show the $q$-analog of a well-known result of Farahat and Higman: in the center of the Iwahori-Hecke algebra $\mathscr{H}_{n,q}$, if $(a_{\lambda \mu}^ν (n,q))_ν$ is the set of structure constants involved in the product of two Geck-Rouquier conjugacy classes $\Gamma_{\lambda, n}$ and $\Gamma_{\mu,n}$, then each coefficient $a_{\lambda \mu}^ν (n,q)$ depend on $n$ and $q$ in a polynomial way. Our proof relies on the construction of a projective limit of the Hecke algebras; this projective limit is inspired by the Ivanov-Kerov algebra of partial permutations. Nous démontrons le $q$-analogue d'un résultat bien connu de Farahat et Higman : dans le centre de l'algèbre d'Iwahori-Hecke $\mathscr{H}_{n,q}$, si $(a_{\lambda \mu}^ν (n,q))_ν$ est l'ensemble des constantes de structure mises en jeu dans le produit de deux classes de conjugaison de Geck-Rouquier $\Gamma_{\lambda, n}$ et $\Gamma_{\mu,n}$, alors chaque coefficient $a_{\lambda \mu}^ν (n,q)$ dépend de façon polynomiale de $n$ et de $q$. Notre preuve repose sur la construction d'une limite projective des algèbres d'Hecke ; cette limite projective est inspirée de l'algèbre d'Ivanov-Kerov des permutations partielles.

1995 ◽  
Vol 173 (3) ◽  
pp. 499-517 ◽  
Author(s):  
M.S. Putcha

Author(s):  
Takehiro Hasegawa ◽  
Hayato Saigo ◽  
Seiken Saito ◽  
Shingo Sugiyama

The subject of the present paper is an application of quantum probability to [Formula: see text]-adic objects. We give a quantum-probabilistic interpretation of the spherical Hecke algebra for [Formula: see text], where [Formula: see text] is a [Formula: see text]-adic field. As a byproduct, we obtain a new proof of the Fourier inversion formula for [Formula: see text].


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jia Huang

International audience By investigating the action of the 0-Hecke algebra on the coinvariant algebra and the complete flag variety, we interpret generating functions counting the permutations with fixed inverse descent set by their inversion number and major index. En étudiant l'action de l'algèbre de 0-Hecke sur l'algèbre coinvariante et la variété de drapeaux complète, nous interprétons les fonctions génératrices qui comptent les permutations avec un ensemble inverse de descentes fixé, selon leur nombre d'inversions et leur "major index''.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
J.B. Lewis ◽  
V. Reiner ◽  
D. Stanton

International audience The number of shortest factorizations into reflections for a Singer cycle in $GL_n(\mathbb{F}_q)$ is shown to be $(q^n-1)^{n-1}$. Formulas counting factorizations of any length, and counting those with reflections of fixed conjugacy classes are also given. Nous prouvons que le nombre de factorisations de longueur minimale d’un cycle de Singer dans $GL_n(\mathbb{F}_q)$ comme un produit de réflexions est $(q^n-1)^{n-1}$. Nous présentons aussi des formules donnant le nombre de factorisations de toutes les longueurs ainsi que des formules pour le nombre de factorisations comme produit de réflexions ayant des classes de conjugaison fixes.


1998 ◽  
Vol 50 (1) ◽  
pp. 167-192 ◽  
Author(s):  
Tom Halverson ◽  
Arun Ram

AbstractIwahori-Hecke algebras for the infinite series of complex reflection groups G(r, p, n) were constructed recently in the work of Ariki and Koike [AK], Broué andMalle [BM], and Ariki [Ari]. In this paper we give Murnaghan-Nakayama type formulas for computing the irreducible characters of these algebras. Our method is a generalization of that in our earlier paper [HR] in whichwe derivedMurnaghan-Nakayama rules for the characters of the Iwahori-Hecke algebras of the classical Weyl groups. In both papers we have been motivated by C. Greene [Gre], who gave a new derivation of the Murnaghan-Nakayama formula for irreducible symmetric group characters by summing diagonal matrix entries in Young's seminormal representations. We use the analogous representations of the Iwahori-Hecke algebra of G(r, p, n) given by Ariki and Koike [AK] and Ariki [Ari].


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Chris Berg ◽  
Monica Vazirani

International audience In this paper we give an alternate combinatorial description of the "$(\ell,0)$-Carter partitions''. Our main theorem is the equivalence of our combinatoric and the one introduced by James and Mathas ($\textit{A q-analogue of the Jantzen-Schaper theorem}$). The condition of being an $(\ell,0)$-Carter partition is fundamentally related to the hook lengths of the partition. The representation-theoretic significance of their combinatoric on an $\ell$-regular partition is that it indicates the irreducibility of the corresponding Specht module over the finite Hecke algebra. We use our result to find a generating series which counts the number of such partitions, with respect to the statistic of a partition's first part. We then apply our description of these partitions to the crystal graph $B(\Lambda_0)$ of the basic representation of $\widehat{\mathfrak{sl}_{\ell}}$, whose nodes are labeled by $\ell$-regular partitions. Here we give a fairly simple crystal-theoretic rule which generates all $(\ell,0)$-Carter partitions in the graph of $B(\Lambda_0)$. Dans cet article, nous donnons une description combinatoire alternative des partitions "$(\ell,0)$-Carter". Notre théorème principal est une équivalence entre notre combinatoire et celle introduite par James et Mathas ($\textit{A q-analogue of the Jantzen-Schaper theorem}$). La propriété $(\ell,0)$-Carter est fondamentalement liée aux longueurs des équerres de la partition. En terme de théorie des représentations, leur combinatoire pour une partition $\ell$-régulière permet de déterminer l'irréducibilité du module de Specht spécialisé sur l’algèbre de Hecke finie. Nous utilisons notre résultat pour déterminer leur série génératrice en fonction de la taille de la première part. Nous utilisons ensuite notre description de ces partitions au graphe cristallin $B(\Lambda _0)$ de la représentation basique de $\widehat{\mathfrak{sl}_{\ell}}$, dont les nœuds sont étiquetés par les partitions $\ell$-régulières. Nous donnons une règle cristalline relativement simple permettant d'engendrer toutes les partitions $\ell$-régulières $(\ell,0)$-Carter dans le graphe de $B(\Lambda _0)$.


Sign in / Sign up

Export Citation Format

Share Document