scholarly journals The Shi arrangement and the Ish arrangement

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Drew Armstrong ◽  
Brendon Rhoades

International audience This paper is about two arrangements of hyperplanes. The first — the Shi arrangement — was introduced by Jian-Yi Shi to describe the Kazhdan-Lusztig cells in the affine Weyl group of type A. The second — the Ish arrangement — was recently defined by the first author who used the two arrangements together to give a new interpretation of the q,t-Catalan numbers of Garsia and Haiman. In the present paper we will define a mysterious "combinatorial symmetry'' between the two arrangements and show that this symmetry preserves a great deal of information. For example, the Shi and Ish arrangements share the same characteristic polynomial, the same numbers of regions, bounded regions, dominant regions, regions with c "ceilings'' and d "degrees of freedom'', etc. Moreover, all of these results hold in the greater generality of "deleted'' Shi and Ish arrangements corresponding to an arbitrary subgraph of the complete graph. Our proofs are based on nice combinatorial labellings of Shi and Ish regions and a new set partition-valued statistic on these regions. Cet article traite de deux arrangements d'hyperplans. Le premier — arrangement Shi — a été introduit par Jian-Yi Shi pour décrire les cellules de Kazhdan-Lusztig du groupe de Weyl affine de type A. Le deuxième — arrangement Ish — a été récemment défini par le premier auteur pour donner une nouvelle interprétation des nombres q,t-Catalan de Garsia et Haiman. Ici nous définissons une mystérieuse "symétrie combinatoire" entre les deux arrangements et nous montrons que cette symétrie conserve un grand nombre d'informations. Par exemple, les arrangements Shi et Ish ont le même polynôme caractéristique, le même nombre de régions, de régions bornées, de régions dominantes, de régions avec c "plafonds'' et d "degrés de liberté'', etc. En outre, ces résultats se généralisent aux arrangements Shi et Ish "deleted'' correspondant à un sous-graphe arbitraire du graphe complet. Nos preuves reposent sur des étiquetages combinatoires des régions Shi et Ish, et sur une nouvelle statistique associée.

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jennifer Morse ◽  
Anne Schilling

International audience We apply ideas from crystal theory to affine Schubert calculus and flag Gromov-Witten invariants. By defining operators on certain decompositions of elements in the type-$A$ affine Weyl group, we produce a crystal reflecting the internal structure of Specht modules associated to permutation diagrams. We show how this crystal framework can be applied to study the product of a Schur function with a $k$-Schur function. Consequently, we prove that a subclass of 3-point Gromov-Witten invariants of complete flag varieties for $\mathbb{C}^n$ enumerate the highest weight elements under these operators. Nous appliquons des idées provenant de la théorie des bases cristallines au calcul de Schubert affine et aux invariants de drapeaux de Gromov–Witten. Nous définissons des opérateurs sur certaines décompositions d’éléments de groupes de Weyl affines en type $A$ afin de construire une base cristalline encodant la structure interne des modules de Specht associés aux diagrammes de permutations. Nous montrons comment la structure de cristal permet d’étudier le produit d’une fonction de Schur avec une $k$-fonction de Schur. En conséquence, nous prouvons que la sous-classe des invariants de 3-points de Gromov–Witten d’une variété complète de drapeaux complets pour $\mathbb{C}^n$ énumère les éléments de poids maximaux pour ces opérateurs.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Myrto Kallipoliti ◽  
Eleni Tzanaki

International audience In the present paper, the relation between the dominant regions in the $m$-Shi arrangement of types $B_n/C_n$, and those of the $m$-Shi arrangement of type $A_{n-1}$ is investigated. More precisely, it is shown explicitly how the sets $R^m(B_n)$ and $R^m(C_n)$, of dominant regions of the $m$-Shi arrangement of types $B_n$ and $C_n$ respectively, can be projected to the set $R^m(A_{n-1})$ of dominant regions of the $m$-Shi arrangement of type $A_{n-1}$. This is done by using two different viewpoints for the representative alcoves of these regions: the Shi tableaux and the abacus diagrams. Moreover, bijections between the sets $R^m(B_n)$, $R^m(C_n)$, and lattice paths inside a rectangle $n\times{mn}$ are provided. Dans cet article, nous étudions la relation entre les régions dominantes du $m$-arrangement de Shi de types $B_n/C_n$ et ceux du $m$-arrangement de Shi de type $A_{n-1}$. Plus précisément, nous montrons comment les ensembles $R^m(B_n)$ et $R^m(C_n)$, des régions dominantes du $m$ -arrangement de Shi de types $B_n$ et $C_n$ respectivement, peuvent être projetés sur l’ensemble $R^m(A_{n-1})$ des régions dominantes du $m$-arrangement de Shi de types $A_{n-1}$. Pour cela nous utilisons deux points de vue différents sur les alcôves représentatives de ces régions: les tableaux de Shi et les diagrammes d’abaques. De plus, nous fournissons des bijections entre les ensembles $R^m(B_n)$, $R^m(C_n)$, et les chemins à l’intérieur d’un rectangle $n\times{mn}$.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Martin Rubey ◽  
Christian Stump

International audience In this extended abstract, we investigate bijections on various classes of set partitions of classical types that preserve openers and closers. On the one hand we present bijections for types $B$ and $C$ that interchange crossings and nestings, which generalize a construction by Kasraoui and Zeng for type $A$. On the other hand we generalize a bijection to type $B$ and $C$ that interchanges the cardinality of a maximal crossing with the cardinality of a maximal nesting, as given by Chen, Deng, Du, Stanley and Yan for type $A$. For type $D$, we were only able to construct a bijection between non-crossing and non-nesting set partitions. For all classical types we show that the set of openers and the set of closers determine a non-crossing or non-nesting set partition essentially uniquely. Dans ce résumé, nous étudions des bijections entre diverses classes de partitions d'ensemble de types classiques qui préservent les "openers'' et les "closers''. D'une part, nous présentons des bijections pour les types $B$ et $C$ qui échangent croisées et emboôtées, qui généralisent une construction de Kasraoui et Zeng pour le type $A$. D'autre part, nous généralisons une bijection pour le type $B$ et $C$ qui échange la cardinalité d'un croisement maximal avec la cardinalité d'un emboîtement maximal comme il a été fait par Chen, Deng, Du, Stanley et Yan pour le type $A$. Pour le type $D$, nous avons seulement construit une bijection entre les partitions non croisées et non emboîtées. Pour tout les types classiques, nous montrons que l'ensemble des "openers'' et l'ensemble des "closers'' déterminent une partition non croisées ou non emboîtées essentiellement de façon unique.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Kevin Dilks ◽  
T. Kyle Petersen ◽  
John R. Stembridge

International audience Let $W \ltimes L$ be an irreducible affine Weyl group with Coxeter complex $\Sigma$, where $W$ denotes the associated finite Weyl group and $L$ the translation subgroup. The Steinberg torus is the Boolean cell complex obtained by taking the quotient of $\Sigma$ by the lattice $L$. We show that the ordinary and flag $h$-polynomials of the Steinberg torus (with the empty face deleted) are generating functions over $W$ for a descent-like statistic first studied by Cellini. We also show that the ordinary $h$-polynomial has a nonnegative $\gamma$-vector, and hence, symmetric and unimodal coefficients. In the classical cases, we also provide expansions, identities, and generating functions for the $h$-polynomials of Steinberg tori. Nous considérons un groupe de Weyl affine irréductible $W \ltimes L$ avec complexe de Coxeter $\Sigma$, où $W$ désigne le groupe de Weyl fini associé et $L$ le sous-groupe des translations. Le tore de Steinberg est le complexe cellulaire Booléen obtenu comme le quotient de $\Sigma$ par $L$. Nous montrons que les $h$-polynômes, ordinaires et de drapeaux, du tore de Steinberg (sans la face vide) sont des fonctions génératrices sur $W$ pour une statistique de type descente, étudiée en premier lieu par Cellini. Nous montrons également qu'un $h$-polynôme ordinaire possède un $\gamma$-vecteur positif, et par conséquent, a des coefficients symétriques et unimodaux. Dans les cas classiques, nous donnons également des développements, des identités et des fonctions génératrices pour les $h$-polynômes des tores de Steinberg.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Takuro Abe ◽  
Daisuke Suyama ◽  
Shuhei Tsujie

International audience The Ish arrangement was introduced by Armstrong to give a new interpretation of the $q; t$-Catalan numbers of Garsia and Haiman. Armstrong and Rhoades showed that there are some striking similarities between the Shi arrangement and the Ish arrangement and posed some problems. One of them is whether the Ish arrangement is a free arrangement or not. In this paper, we verify that the Ish arrangement is supersolvable and hence free. Moreover, we give a necessary and sufficient condition for the deleted Ish arrangement to be free L’arrangement Ish a été introduit par Armstrong pour donner une nouvelle interprétation des nombres $q; t$-Catalan de Garsia et Haiman. Armstrong et Rhoades ont montré qu’il y avait des ressemblances frappantes entre l’arrangement Shi et l’arrangement Ish et ont posé des conjectures. L’une d’elles est de savoir si l’arrangement Ish est un arrangement libre ou pas. Dans cet article, nous vérifions que l’arrangement Ish est supersoluble et donc libre. De plus, on donne une condition nécessaire et suffisante pour que l’arrangement Ish réduit soit libre.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Chris Berg ◽  
Franco Saliola ◽  
Luis Serrano

International audience We prove that the Lam-Shimozono ``down operator'' on the affine Weyl group induces a derivation of the affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of k-Schur functions of ``near rectangles'' in the affine nilCoxeter algebra. Consequently, we obtain a combinatorial interpretation of the corresponding k-Littlewood–Richardson coefficients. Nous montrons que l’opérateur ``down'', défini par Lam et Shimozono sur le groupe de Weyl affine, induit une dérivation de la sous-algèbre affine de Fomin-Stanley de l'algèbre affine de nilCoxeter. Nous employons cette dérivation pour vérifier une conjecture de Berg, Bergeron, Pon et Zabrocki sur l'expansion des k-fonctions de Schur indexées par les partitions qui sont ``presque rectangles''. Par conséquent, nous obtenons une interprétation combinatoire des k-coefficients de Littlewood–Richardson correspondants.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Drew Armstrong

International audience In 2003, Haglund's bounce statistic gave the first combinatorial interpretation of the q,t-Catalan numbers and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms of the affine Weyl group of type A. In particular, we define two statistics on affine permutations; one in terms of the Shi hyperplane arrangement, and one in terms of a new arrangement — which we call the Ish arrangement. We prove that our statistics are equivalent to the area' and bounce statistics of Haglund and Loehr. In this setting, we observe that bounce is naturally expressed as a statistic on the root lattice. We extend our statistics in two directions: to "extended'' Shi arrangements and to the bounded chambers of these arrangements. This leads to a (conjectural) combinatorial interpretation for all integral powers of the Bergeron-Garsia nabla operator applied to elementary symmetric functions. En 2003, la statistique bounce de Haglund a donné la première interprétation combinatoire de la somme des nombres q,t-Catalan et de la série de Hilbert des harmoniques diagonaux. Dans cet article nous proposons une nouvelle interprétation combinatoire à partir du groupe de Weyl affine de type A. En particulier, nous définissons deux statistiques sur les permutations affines; l'une à partir de l'arrangement d'hyperplans Shi, et l'autre à partir d'un nouvel arrangement — que nous appelons l'arrangement Ish. Nous prouvons que nos statistiques sont équivalentes aux statistiques area' et bounce de Haglund et Loehr. Dans ce contexte, nous observons que bounce s'exprime naturellement comme une statistique sur le réseau des racines. Nous prolongeons nos statistiques dans deux directions: arrangements Shi "étendus'', et chambres bornées associées. Cela conduit à une interprétation (conjecturale) combinatoire pour toutes les puissances entières de l'opérateur nabla de Bergeron-Garsia appliqué aux fonctions symétriques élémentaires.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Adam Kalman

International audience We study Newton polytopes of cluster variables in type $A_n$ cluster algebras, whose cluster and coefficient variables are indexed by the diagonals and boundary segments of a polygon. Our main results include an explicit description of the affine hull and facets of the Newton polytope of the Laurent expansion of any cluster variable, with respect to any cluster. In particular, we show that every Laurent monomial in a Laurent expansion of a type $A$ cluster variable corresponds to a vertex of the Newton polytope. We also describe the face lattice of each Newton polytope via an isomorphism with the lattice of elementary subgraphs of the associated snake graph. Nous étudions polytopes de Newton des variables amassées dans les algèbres amassées de type A, dont les variables sont indexés par les diagonales et les côtés d’un polygone. Nos principaux résultats comprennent une description explicite de l’enveloppe affine et facettes du polytope de Newton du développement de Laurent de toutes variables amassées. En particulier, nous montrons que tout monôme Laurent dans un développement de Laurent de variable amassée de type A correspond à un sommet du polytope de Newton. Nous décrivons aussi le treillis des facesde chaque polytope de Newton via un isomorphisme avec le treillis des sous-graphes élémentaires du “snake graph” qui est associé.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Cristian Lenart

International audience A breakthrough in the theory of (type $A$) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of fillings of Young diagrams. Recently, Ram and Yip gave a formula for the Macdonald polynomials of arbitrary type in terms of the corresponding affine Weyl group. In this paper, we show that a Haglund-Haiman-Loehr type formula follows naturally from the more general Ram-Yip formula, via compression. Then we extend this approach to the Hall-Littlewood polynomials of type $C$, which are specializations of the corresponding Macdonald polynomials at $q=0$. We note that no analog of the Haglund-Haiman-Loehr formula exists beyond type $A$, so our work is a first step towards finding such a formula.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Avinash J. Dalal ◽  
Jennifer Morse

International audience We introduce two families of symmetric functions with an extra parameter $t$ that specialize to Schubert representatives for cohomology and homology of the affine Grassmannian when $t=1$. The families are defined by a statistic on combinatorial objects associated to the type-$A$ affine Weyl group and their transition matrix with Hall-Littlewood polynomials is $t$-positive. We conjecture that one family is the set of $k$-atoms. Nous présentons deux familles de fonctions symétriques dépendant d'un paramètre $t$ et dont les spécialisations à $t=1$ correspondent aux classes de Schubert dans la cohomologie et l'homologie des variétés Grassmanniennes affines. Les familles sont définies par des statistiques sur certains objets combinatoires associés au groupe de Weyl affine de type $A$ et leurs matrices de transition dans la base des polynômes de Hall-Littlewood sont $t$-positives. Nous conjecturons qu'une de ces familles correspond aux $k$-atomes.


Sign in / Sign up

Export Citation Format

Share Document