scholarly journals Hyperplane Arrangements and Diagonal Harmonics

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Drew Armstrong

International audience In 2003, Haglund's bounce statistic gave the first combinatorial interpretation of the q,t-Catalan numbers and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms of the affine Weyl group of type A. In particular, we define two statistics on affine permutations; one in terms of the Shi hyperplane arrangement, and one in terms of a new arrangement — which we call the Ish arrangement. We prove that our statistics are equivalent to the area' and bounce statistics of Haglund and Loehr. In this setting, we observe that bounce is naturally expressed as a statistic on the root lattice. We extend our statistics in two directions: to "extended'' Shi arrangements and to the bounded chambers of these arrangements. This leads to a (conjectural) combinatorial interpretation for all integral powers of the Bergeron-Garsia nabla operator applied to elementary symmetric functions. En 2003, la statistique bounce de Haglund a donné la première interprétation combinatoire de la somme des nombres q,t-Catalan et de la série de Hilbert des harmoniques diagonaux. Dans cet article nous proposons une nouvelle interprétation combinatoire à partir du groupe de Weyl affine de type A. En particulier, nous définissons deux statistiques sur les permutations affines; l'une à partir de l'arrangement d'hyperplans Shi, et l'autre à partir d'un nouvel arrangement — que nous appelons l'arrangement Ish. Nous prouvons que nos statistiques sont équivalentes aux statistiques area' et bounce de Haglund et Loehr. Dans ce contexte, nous observons que bounce s'exprime naturellement comme une statistique sur le réseau des racines. Nous prolongeons nos statistiques dans deux directions: arrangements Shi "étendus'', et chambres bornées associées. Cela conduit à une interprétation (conjecturale) combinatoire pour toutes les puissances entières de l'opérateur nabla de Bergeron-Garsia appliqué aux fonctions symétriques élémentaires.

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Avinash J. Dalal ◽  
Jennifer Morse

International audience We introduce two families of symmetric functions with an extra parameter $t$ that specialize to Schubert representatives for cohomology and homology of the affine Grassmannian when $t=1$. The families are defined by a statistic on combinatorial objects associated to the type-$A$ affine Weyl group and their transition matrix with Hall-Littlewood polynomials is $t$-positive. We conjecture that one family is the set of $k$-atoms. Nous présentons deux familles de fonctions symétriques dépendant d'un paramètre $t$ et dont les spécialisations à $t=1$ correspondent aux classes de Schubert dans la cohomologie et l'homologie des variétés Grassmanniennes affines. Les familles sont définies par des statistiques sur certains objets combinatoires associés au groupe de Weyl affine de type $A$ et leurs matrices de transition dans la base des polynômes de Hall-Littlewood sont $t$-positives. Nous conjecturons qu'une de ces familles correspond aux $k$-atomes.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Jair Taylor

International audience If $f(x)$ is an invertible power series we may form the symmetric function $f(f^{-1}(x_1)+f^{-1}(x_2)+...)$ which is called a formal group law. We give a number of examples of power series $f(x)$ that are ordinary generating functions for combinatorial objects with a recursive structure, each of which is associated with a certain hypergraph. In each case, we show that the corresponding formal group law is the sum of the chromatic symmetric functions of these hypergraphs by finding a combinatorial interpretation for $f^{-1}(x)$. We conjecture that the chromatic symmetric functions arising in this way are Schur-positive. Si $f(x)$ est une série entière inversible, nous pouvons former la fonction symétrique $f(f^{-1}(x_1)+f^{-1}(x_2)+...)$ que nous appelons une loi de groupe formel. Nous donnons plusieurs exemples de séries entières $f(x)$ qui sont séries génératrices ordinaires pour des objets combinatoires avec une structure récursive, chacune desquelles est associée à un certain hypergraphe. Dans chaque cas, nous donnons une interprétation combinatoire à $f^{-1}(x)$, ce qui nous permet de montrer que la loi de groupe formel correspondante est la somme des fonctions symétriques chromatiques de ces hypergraphes. Nous conjecturons que les fonctions symétriques chromatiques apparaissant de cette manière sont Schur-positives.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Andrew Timothy Wilson

International audience We generalize previous definitions of Tesler matrices to allow negative matrix entries and non-positive hook sums. Our main result is an algebraic interpretation of a certain weighted sum over these matrices. Our interpretation uses <i>virtual Hilbert series</i>, a new class of symmetric function specializations which are defined by their values on (modified) Macdonald polynomials. As a result of this interpretation, we obtain a Tesler matrix expression for the Hall inner product $\langle \Delta_f e_n, p_{1^{n}}\rangle$, where $\Delta_f$ is a symmetric function operator from the theory of diagonal harmonics. We use our Tesler matrix expression, along with various facts about Tesler matrices, to provide simple formulas for $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ and $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ involving $q; t$-binomial coefficients and ordered set partitions, respectively. Nous généralisons les définitions précédentes de matrices Tesler pour permettre les entrées de la matrice négatives et des montants crochet non-positifs. Notre principal résultat est une interprétation algébrique d’une certaine somme pondérée sur ces matrices. Notre interprétation utilise <i>série de Hilbert virtuel</i>, une nouvelle classe de spécialisations fonctionnelles symétriques qui sont définies par leurs valeurs sur les polynômes de Macdonald (modifiées). À la suite de cette interprétation, on obtient une expression de la matrice Tesler pour la salle intérieure produit $\langle \Delta_f e_n, p_{1^{n}}\rangle$, où $\Delta_f$ est un opérateur de fonction symétrique de la théorie harmonique de diagonale. Nous utilisons notre expression de la matrice Tesler, ainsi que divers faits sur des matrices Tesler, de fournir des formules simples pour $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ et $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ impliquant $q; t$-coefficients binomial et ensemble ordonné partitions, respectivement.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Luca Moci

International audience We introduce a multiplicity Tutte polynomial $M(x,y)$, which generalizes the ordinary one and has applications to zonotopes and toric arrangements. We prove that $M(x,y)$ satisfies a deletion-restriction recurrence and has positive coefficients. The characteristic polynomial and the Poincaré polynomial of a toric arrangement are shown to be specializations of the associated polynomial $M(x,y)$, likewise the corresponding polynomials for a hyperplane arrangement are specializations of the ordinary Tutte polynomial. Furthermore, $M(1,y)$ is the Hilbert series of the related discrete Dahmen-Micchelli space, while $M(x,1)$ computes the volume and the number of integral points of the associated zonotope. On introduit un polynôme de Tutte avec multiplicité $M(x, y)$, qui généralise le polynôme de Tutte ordinaire et a des applications aux zonotopes et aux arrangements toriques. Nous prouvons que $M(x, y)$ satisfait une récurrence de "deletion-restriction'' et a des coefficients positifs. Le polynôme caractéristique et le polynôme de Poincaré d'un arrangement torique sont des spécialisations du polynôme associé $M(x, y)$, de même que les polynômes correspondants pour un arrangement d'hyperplans sont des spécialisations du polynôme de Tutte ordinaire. En outre, $M(1, y)$ est la série de Hilbert de l'espace discret de Dahmen-Micchelli associé, et $M(x, 1)$ calcule le volume et le nombre de points entiers du zonotope associé.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Paul Levande

International audience We examine the $q=1$ and $t=0$ special cases of the parking functions conjecture. The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is equal to the bivariate generating function of $area$ and $dinv$ over the set of parking functions. Haglund recently proved that the Hilbert series for the space of diagonal harmonics is equal to a bivariate generating function over the set of Tesler matrices–upper-triangular matrices with every hook sum equal to one. We give a combinatorial interpretation of the Haglund generating function at $q=1$ and prove the corresponding case of the parking functions conjecture (first proven by Garsia and Haiman). We also discuss a possible proof of the $t = 0$ case consistent with this combinatorial interpretation. We conclude by briefly discussing possible refinements of the parking functions conjecture arising from this research and point of view. $\textbf{Note added in proof}$: We have since found such a proof of the $t = 0$ case and conjectured more detailed refinements. This research will most likely be presented in full in a forthcoming article. On examine les cas spéciaux $q=1$ et $t=0$ de la conjecture des fonctions de stationnement. Cette conjecture déclare que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à la fonction génératrice bivariée (paramètres $area$ et $dinv$) sur l'ensemble des fonctions de stationnement. Haglund a prouvé récemment que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à une fonction génératrice bivariée sur l'ensemble des matrices de Tesler triangulaires supérieures dont la somme de chaque équerre vaut un. On donne une interprétation combinatoire de la fonction génératrice de Haglund pour $q=1$ et on prouve le cas correspondant de la conjecture dans le cas des fonctions de stationnement (prouvé d'abord par Garsia et Haiman). On discute aussi d'une preuve possible du cas $t=0$, cohérente avec cette interprétation combinatoire. On conclut en discutant brièvement les raffinements possibles de la conjecture des fonctions de stationnement de ce point de vue. $\textbf{Note ajoutée sur épreuve}$: j'ai trouvé depuis cet article une preuve du cas $t=0$ et conjecturé des raffinements possibles. Ces résultats seront probablement présentés dans un article ultérieur.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Chris Berg ◽  
Franco Saliola ◽  
Luis Serrano

International audience We prove that the Lam-Shimozono ``down operator'' on the affine Weyl group induces a derivation of the affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of k-Schur functions of ``near rectangles'' in the affine nilCoxeter algebra. Consequently, we obtain a combinatorial interpretation of the corresponding k-Littlewood–Richardson coefficients. Nous montrons que l’opérateur ``down'', défini par Lam et Shimozono sur le groupe de Weyl affine, induit une dérivation de la sous-algèbre affine de Fomin-Stanley de l'algèbre affine de nilCoxeter. Nous employons cette dérivation pour vérifier une conjecture de Berg, Bergeron, Pon et Zabrocki sur l'expansion des k-fonctions de Schur indexées par les partitions qui sont ``presque rectangles''. Par conséquent, nous obtenons une interprétation combinatoire des k-coefficients de Littlewood–Richardson correspondants.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Ekaterina A. Vassilieva

International audience This paper is devoted to the explicit computation of generating series for the connection coefficients of two commutative subalgebras of the group algebra of the symmetric group, the class algebra and the double coset algebra. As shown by Hanlon, Stanley and Stembridge (1992), these series gives the spectral distribution of some random matrices that are of interest to statisticians. Morales and Vassilieva (2009, 2011) found explicit formulas for these generating series in terms of monomial symmetric functions by introducing a bijection between partitioned hypermaps on (locally) orientable surfaces and some decorated forests and trees. Thanks to purely algebraic means, we recover the formula for the class algebra and provide a new simpler formula for the double coset algebra. As a salient ingredient, we compute an explicit formulation for zonal polynomials indexed by partitions of type $[a,b,1^{n-a-b}]$. Cet article est dédié au calcul explicite des séries génératrices des constantes de structure de deux sous-algèbres commutatives de l'algèbre de groupe du groupe symétrique, l'algèbre de classes et l'algèbre de double classe latérale. Tel que montrè par Hanlon, Stanley and Stembridge (1992), ces séries déterminent la distribution spectrale de certaines matrices aléatoires importantes en statistique. Morales et Vassilieva (2009, 2011) ont trouvè des formules explicites pour ces séries génératrices en termes des monômes symétriques en introduisant une bijection entre les hypercartes partitionnées sur des surfaces (localement) orientables et certains arbres et forêts décorées. Grâce à des moyens purement algébriques, nous retrouvons la formule pour l'algèbre de classe et déterminons une nouvelle formule plus simple pour l'algèbre de double classe latérale. En tant que point saillant de notre démonstration nous calculons une formulation explicite pour les polynômes zonaux indexés par des partitions de type $[a,b,1^{n-a-b}]$.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Suho Oh ◽  
Hwanchul Yoo

International audience We link Schubert varieties in the generalized flag manifolds with hyperplane arrangements. For an element of a Weyl group, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial of the corresponding Schubert variety if and only if the Schubert variety is rationally smooth. Nous relions des variétés de Schubert dans le variété flag généralisée avec des arrangements des hyperplans. Pour un élément dún groupe de Weyl, nous construisons un certain arrangement graphique des hyperplans. Nous montrons que la fonction génératrice pour les régions de cet arrangement coincide avec le polynome de Poincaré de la variété de Schubert correspondante si et seulement si la variété de Schubert est rationnellement lisse.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jia Huang

International audience We define an action of the $0$-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their $(q,t)$-analogues introduced by Bergeron and Zabrocki. We also obtain multivariate quasisymmetric function identities, which specialize to a result of Garsia and Gessel on the generating function of the joint distribution of five permutation statistics. Nous définissons une action de l’algèbre de Hecke-$0$ de type A sur l’anneau Stanley-Reisner de l’algèbre de Boole. En étudiant cette action, on obtient une famille de fonctions symétriques non commutatives multivariées, qui se spécialisent pour les non commutatives fonctions de Hall-Littlewood symétriques et leur $(q,t)$-analogues introduits par Bergeron et Zabrocki. Nous obtenons également des identités de fonction quasisymmetrique multivariées, qui se spécialisent à la suite de Garsia et Gessel sur la fonction génératrice de la distribution conjointe de cinq statistiques de permutation.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Cristian Lenart

International audience A breakthrough in the theory of (type $A$) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of fillings of Young diagrams. Recently, Ram and Yip gave a formula for the Macdonald polynomials of arbitrary type in terms of the corresponding affine Weyl group. In this paper, we show that a Haglund-Haiman-Loehr type formula follows naturally from the more general Ram-Yip formula, via compression. Then we extend this approach to the Hall-Littlewood polynomials of type $C$, which are specializations of the corresponding Macdonald polynomials at $q=0$. We note that no analog of the Haglund-Haiman-Loehr formula exists beyond type $A$, so our work is a first step towards finding such a formula.


Sign in / Sign up

Export Citation Format

Share Document