scholarly journals On non-conjugate Coxeter elements in well-generated reflection groups

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Victor Reiner ◽  
Vivien Ripoll ◽  
Christian Stump

International audience Given an irreducible well-generated complex reflection group $W$ with Coxeter number $h$, we call a Coxeter element any regular element (in the sense of Springer) of order $h$ in $W$; this is a slight extension of the most common notion of Coxeter element. We show that the class of these Coxeter elements forms a single orbit in $W$ under the action of reflection automorphisms. For Coxeter and Shephard groups, this implies that an element $c$ is a Coxeter element if and only if there exists a simple system $S$ of reflections such that $c$ is the product of the generators in $S$. We moreover deduce multiple further implications of this property. In particular, we obtain that all noncrossing partition lattices of $W$ associated to different Coxeter elements are isomorphic. We also prove that there is a simply transitive action of the Galois group of the field of definition of $W$ on the set of conjugacy classes of Coxeter elements. Finally, we extend several of these properties to Springer's regular elements of arbitrary order. Étant donnés un groupe de réflexion complexe $W$, irréductible et bien engendré, et $h$ son nombre de Coxeter, nous appelons élément de Coxeter un élément régulier (au sens de Springer) d’ordre $h$; ceci est une extension de la notion la plus habituelle d’élément de Coxeter. Nous montrons que l’ensemble de ces éléments de Coxeter forme une seule orbite sous l’action des automorphismes de réflexion de $W$. Pour les groupes de Coxeter et de Shephard, ceci implique qu’un élément $c$ est un élément de Coxeter si et seulement s’il existe un système simple $S$ de réflexions tel que $c$ soit le produit des générateurs dans $S$. Nous déduisons de cette propriété plusieurs autres résultats. En particulier, nous obtenons que tous les treillis de partitions non-croisées de $W$, associés à différents éléments de Coxeter, sont isomorphes. Nous montrons également qu’il existe une action simplement transitive du groupe de Galois du corps de définition de $W$ sur l’ensemble des classes de conjugaison d’éléments de Coxeter. Enfin, nous étendons plusieurs de ces propriétés au cas des éléments réguliers d’ordre quelconque.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Henri Mühle

International audience We prove that the noncrossing partition lattices associated with the complex reflection groups G(d, d, n) for d, n ≥ 2 admit a decomposition into saturated chains that are symmetric about the middle ranks. A consequence of this result is that these lattices have the strong Sperner property, which asserts that the cardinality of the union of the k largest antichains does not exceed the sum of the k largest ranks for all k ≤ n. Subsequently, we use a computer to complete the proof that any noncrossing partition lattice associated with a well-generated complex reflection group is strongly Sperner, thus affirmatively answering a special case of a question of D. Armstrong. This was previously established only for the Coxeter groups of type A and B.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Vivien Ripoll

International audience When $W$ is a finite reflection group, the noncrossing partition lattice $NC(W)$ of type $W$ is a very rich combinatorial object, extending the notion of noncrossing partitions of an $n$-gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in $NC(W)$ as a generalized Fuß-Catalan number, depending on the invariant degrees of $W$. We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of $NC(W)$ as fibers of a "Lyashko-Looijenga covering''. This covering is constructed from the geometry of the discriminant hypersurface of $W$. We deduce new enumeration formulas for certain factorizations of a Coxeter element of $W$. Lorsque $W$ est un groupe de réflexion fini, le treillis $NC(W)$ des partitions non-croisées de type $W$ est un objet combinatoire très riche, qui généralise la notion de partitions non-croisées d'un $n$-gone. Une formule (seulement prouvée au cas par cas à l'heure actuelle) exprime le nombre de chaînes de longueur donnée dans $NC(W)$ sous la forme d'un nombre de Fuß-Catalan généralisé, qui dépend des degrés invariants de $W$. Nous décrivons une stratégie visant à comprendre certaines spécifications de cette formule de manière uniforme, en utilisant une interprétation des chaînes de $NC(W)$ comme fibres d'un "revêtement de Lyashko-Looijenga''. Ce revêtement est construit à partir de la géométrie de l'hypersurface du discriminant de $W$. Nous en déduisons de nouvelles formules de comptage pour certaines factorisations d'un élément de Coxeter de $W$.


2020 ◽  
pp. 1-48
Author(s):  
Joel Brewster Lewis ◽  
Alejandro H. Morales

Abstract We enumerate factorizations of a Coxeter element in a well-generated complex reflection group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite families of generalized permutations, our approach is fully combinatorial. It gives results analogous to those of Jackson in the symmetric group and can be refined to encode a notion of cycle type. As one application of our results, we give a previously overlooked characterization of the poset of W-noncrossing partitions.


10.37236/8109 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Daniël Kroes

Let $r$ and $n$ be positive integers, let $G_n$ be the complex reflection group of $n \times n$ monomial matrices whose entries are $r^{\textrm{th}}$ roots of unity and let $0 \leq k \leq n$ be an integer. Recently, Haglund, Rhoades and Shimozono ($r=1$) and Chan and Rhoades ($r>1$) introduced quotients $R_{n,k}$ (for $r>1$) and $S_{n,k}$ (for $r \geq 1$) of the polynomial ring $\mathbb{C}[x_1,\ldots,x_n]$ in $n$ variables, which for $k=n$ reduce to the classical coinvariant algebra attached to $G_n$. When $n=k$ and $r=1$, Garsia and Stanton exhibited a quotient of $\mathbb{C}[\mathbf{y}_S]$ isomorphic to the coinvariant algebra, where $\mathbb{C}[\mathbf{y}_S]$ is the polynomial ring in $2^n-1$ variables whose variables are indexed by nonempty subsets $S \subseteq [n]$. In this paper, we will define analogous quotients that are isomorphic to $R_{n,k}$ and $S_{n,k}$.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 438
Author(s):  
Jeong-Yup Lee ◽  
Dong-il Lee ◽  
SungSoon Kim

We construct a Gröbner-Shirshov basis of the Temperley-Lieb algebra T ( d , n ) of the complex reflection group G ( d , 1 , n ) , inducing the standard monomials expressed by the generators { E i } of T ( d , n ) . This result generalizes the one for the Coxeter group of type B n in the paper by Kim and Lee We also give a combinatorial interpretation of the standard monomials of T ( d , n ) , relating to the fully commutative elements of the complex reflection group G ( d , 1 , n ) . More generally, the Temperley-Lieb algebra T ( d , r , n ) of the complex reflection group G ( d , r , n ) is defined and its dimension is computed.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
José O. Araujo ◽  
Tim Bratten ◽  
Cesar L. Maiarú

In an article published in 1980, Farahat and Peel realized the irreducible modular representations of the symmetric group. One year later, Al-Aamily, Morris, and Peel constructed the irreducible modular representations for a Weyl group of typeBn. In both cases, combinatorial methods were used. Almost twenty years later, using a geometric construction based on the ideas of Macdonald, first Aguado and Araujo and then Araujo, Bigeón, and Gamondi also realized the irreducible modular representations for the Weyl groups of typesAnandBn. In this paper, we extend the geometric construction based on the ideas of Macdonald to realize the irreducible modular representations of the complex reflection group of typeG(m,1,n).


10.37236/7362 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Elise DelMas ◽  
Thomas Hameister ◽  
Victor Reiner

For well-generated complex reflection groups, Chapuy and Stump gave a simple product for a generating function counting reflection factorizations of a Coxeter element by their length. This is refined here to record the numberof reflections used from each orbit of hyperplanes. The proof is case-by-case via the classification of well-generated groups. It implies a new expression for the Coxeter number, expressed via data coming from a hyperplane orbit; a case-free proof of this due to J. Michel is included.


10.37236/428 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Thomas Brady ◽  
Aisling Kenny ◽  
Colum Watt

We define the notion of a climbing element in a finite real reflection group relative to a total order on the reflection set and we characterise these elements in the case where the total order arises from a bipartite Coxeter element.


Sign in / Sign up

Export Citation Format

Share Document