scholarly journals Mean field analysis for inhomogeneous bike sharing systems

2012 ◽  
Vol DMTCS Proceedings vol. AQ,... (Proceedings) ◽  
Author(s):  
Christine Fricker ◽  
Nicolas Gast ◽  
Hanene Mohamed

International audience In the paper, bike sharing systems with stations having a finite capacity are studied as stochastic networks. The inhomogeneity is modeled by clusters. We use a mean field limit to compute the limiting stationary distribution of the number of bikes at the stations. This method is an alternative to analytical methods. It can be used even if a closed form expression for the stationary distribution is out of reach as illustrated on a variant. Both models are compared. A practical conclusion is that avoiding empty or full stations does not improve overall performance.

Author(s):  
Shuang Tao ◽  
Jamol Pender

As more people move back into densely populated cities, bike sharing is emerging as an important mode of urban mobility. In a typical bike-sharing system (BSS), riders arrive at a station and take a bike if it is available. After retrieving a bike, they ride it for a while, then return it to a station near their final destinations. Since space is limited in cities, each station has a finite capacity of docks, which cannot hold more bikes than its capacity. In this paper, we study BSSs with stations having a finite capacity. By an appropriate scaling of our stochastic model, we prove a mean-field limit and a central limit theorem for an empirical process of the number of stations with k bikes. The mean-field limit and the central limit theorem provide insight on the mean, variance, and sample path dynamics of large-scale BSSs. We also leverage our results to estimate confidence intervals for various performance measures such as the proportion of empty stations, the proportion of full stations, and the number of bikes in circulation. These performance measures have the potential to inform the operations and design of future BSSs.


2006 ◽  
Vol 20 (2) ◽  
pp. 201-217 ◽  
Author(s):  
Sandro Romani ◽  
Daniel J. Amit ◽  
Gianluigi Mongillo

2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Hui Huang ◽  
Jinniao Qiu

AbstractIn this paper, we propose and study a stochastic aggregation–diffusion equation of the Keller–Segel (KS) type for modeling the chemotaxis in dimensions $$d=2,3$$ d = 2 , 3 . Unlike the classical deterministic KS system, which only allows for idiosyncratic noises, the stochastic KS equation is derived from an interacting particle system subject to both idiosyncratic and common noises. Both the unique existence of solutions to the stochastic KS equation and the mean-field limit result are addressed.


Author(s):  
Stefano Almi ◽  
Marco Morandotti ◽  
Francesco Solombrino

AbstractA multi-step Lagrangian scheme at discrete times is proposed for the approximation of a nonlinear continuity equation arising as a mean-field limit of spatially inhomogeneous evolutionary games, describing the evolution of a system of spatially distributed agents with strategies, or labels, whose payoff depends also on the current position of the agents. The scheme is Lagrangian, as it traces the evolution of position and labels along characteristics, and is a multi-step scheme, as it develops on the following two stages: First, the distribution of strategies or labels is updated according to a best performance criterion, and then, this is used by the agents to evolve their position. A general convergence result is provided in the space of probability measures. In the special cases of replicator-type systems and reversible Markov chains, variants of the scheme, where the explicit step in the evolution of the labels is replaced by an implicit one, are also considered and convergence results are provided.


2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


1994 ◽  
Vol 343 ◽  
Author(s):  
J. A. Floro ◽  
C. V. Thompson

ABSTRACTAbnormal grain growth is characterized by the lack of a steady state grain size distribution. In extreme cases the size distribution becomes transiently bimodal, with a few grains growing much larger than the average size. This is known as secondary grain growth. In polycrystalline thin films, the surface energy γs and film/substrate interfacial energy γi vary with grain orientation, providing an orientation-selective driving force that can lead to abnormal grain growth. We employ a mean field analysis that incorporates the effect of interface energy anisotropy to predict the evolution of the grain size/orientation distribution. While abnormal grain growth and texture evolution always result when interface energy anisotropy is present, whether secondary grain growth occurs will depend sensitively on the details of the orientation dependence of γi.


2016 ◽  
Vol 166 (2) ◽  
pp. 211-229 ◽  
Author(s):  
Li Chen ◽  
Simone Göttlich ◽  
Qitao Yin

Sign in / Sign up

Export Citation Format

Share Document