scholarly journals Minimal transitive factorizations of a permutation of type (p,q)

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Jang Soo Kim ◽  
Seunghyun Seo ◽  
Heesung Shin

International audience We give a combinatorial proof of Goulden and Jackson's formula for the number of minimal transitive factorizations of a permutation when the permutation has two cycles. We use the recent result of Goulden, Nica, and Oancea on the number of maximal chains of annular noncrossing partitions of type B. Nous donnons une preuve combinatoire de formule de Goulden et Jackson pour le nombre de factorisations transitives minimales d'une permutation lorsque la permutation a deux cycles. Nous utilisons le rèsultat rècent de Goulden, Nica, et Oancea sur le nombre de chaî nes maximales des partitions non-croisèes annulaires de type B.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Emily Gunawan ◽  
Gregg Musiker

International audience We extend a $T$-path expansion formula for arcs on an unpunctured surface to the case of arcs on a once-punctured polygon and use this formula to give a combinatorial proof that cluster monomials form the atomic basis of a cluster algebra of type $D$. Nous généralisons une formule de développement en $T$-chemins pour les arcs sur une surface non-perforée aux arcs sur un polygone à une perforation. Nous utilisons cette formule pour donner une preuve combinatoire du fait que les monômes amassées constituent la base atomique d’une algèbre amassée de type $D$.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Alexander Garver ◽  
Jacob P. Matherne

International audience Exceptional sequences are certain ordered sequences of quiver representations. We use noncrossing edge-labeled trees in a disk with boundary vertices (expanding on T. Araya’s work) to classify exceptional sequences of representations of $Q$, the linearly ordered quiver with $n$ vertices. We also show how to use variations of this model to classify $c$-matrices of $Q$, to interpret exceptional sequences as linear extensions, and to give a simple bijection between exceptional sequences and certain chains in the lattice of noncrossing partitions. In the case of $c$-matrices, we also give an interpretation of $c$-matrix mutation in terms of our noncrossing trees with directed edges. Les suites exceptionnelles sont certaines suites ordonnées de représentations de carquois. Nous utilisons des arbres aux arêtes étiquetés et aux sommets dans le bord d’un disque (expansion sur le travail de T. Araya) pour classifier les suites exceptionnelles de représentations du carquois linéairement ordonné à $n$ sommets. Nous exploitons des variations de ce modèle pour classifier les $c$-matrices dudit carquois, pour interpréter les suites exceptionnelles comme des extensions linéaires, et pour donner une bijection élémentaire entre les suites exceptionnelles et certaines chaînes dans le réseau des partitions sans croisement. Dans le cas des $c$-matrices, nous donnons également une interprétation de la mutation des $c$-matrices en termes des arbres sans croisement aux arêtes orientés.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Frédéric Chapoton ◽  
Gregory Chatel ◽  
Viviane Pons

International audience We use a recently introduced combinatorial object, the $\textit{interval-poset}$, to describe two bijections on intervals of the Tamari lattice. Both bijections give a combinatorial proof of some previously known results. The first one is an inner bijection between Tamari intervals that exchanges the $\textit{initial rise}$ and $\textit{lower contacts}$ statistics. Those were introduced by Bousquet-Mélou, Fusy, and Préville-Ratelle who proved they were symmetrically distributed but had no combinatorial explanation. The second bijection sends a Tamari interval to a closed flow of an ordered forest. These combinatorial objects were studied by Chapoton in the context of the Pre-Lie operad and the connection with the Tamari order was still unclear. Nous utilisons les $\textit{intervalles-posets}$, très récemment introduits, pour décrire deux bijections sur les intervalles du treillis de Tamari. Nous obtenons ainsi des preuves combinatoires de précédents résultats. La première bijection est une opération interne sur les intervalles qui échange les statistiques de la $\textit{montée initiale}$ et du $\textit{nombre de contacts}$. Ces dernières ont été introduites par Bousquet-Mélou, Fusy et Préville-Ratelle qui ont prouvé qu’elles étaient symétriquement distribuées sans pour autant proposer d’explication combinatoire. La seconde bijection fait le lien avec un objet étudié par Chapoton dans le cadre de l’opérade Pré-Lie : les flots sur les forêts ordonnées. Le lien avec l’ordre de Tamari avait déjà été remarqué sans pour autant être expliqué.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Christopher Severs ◽  
Jacob A. White

International audience The $k$-parabolic subspace arrangement, introduced by Barcelo, Severs and White, is a generalization of the well known $k$-equal arrangements of type-$A$ and type-$B$. In this paper we use the discrete Morse theory of Forman to study the homology of the complements of $k$-parabolic subspace arrangements. In doing so, we recover some known results of Björner et al. and provide a combinatorial interpretation of the Betti numbers for any $k$-parabolic subspace arrangement. The paper provides results for any $k$-parabolic subspace arrangement, however we also include an extended example of our methods applied to the $k$-equal arrangements of type-$A$ and type-$B$. In these cases, we obtain new formulas for the Betti numbers. L'arrangement $k$-parabolique, introduit par Barcelo, Severs et White, est une généralisation des arrangements, $k$-éguax de type $A$ et de type $B$. Dans cet article, nous utilisons la théorie de Morse discrète proposée par Forman pour étudier l'homologie des compléments d'arrangements $k$-paraboliques. Ce faisant, nous retrouvons les résultats connus de Bjorner et al. mais aussi nous fournissons une interprétation combinatoire des nombres de Betti pour des arrangements $k$-paraboliques. Ce papier fournit alors des résultats pour n'importe quel arrangement $k$-parabolique, cependant nous y présentons un exemple étendu de nos méthodes appliquées aux arrangements $k$-éguax de type $A$ et de type $B$. Pour ce cas, on obtient de nouvelles formules pour les nombres de Betti.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Philippe Biane ◽  
Matthieu Josuat-Vergès

International audience It is known that the number of minimal factorizations of the long cycle in the symmetric group into a product of k cycles of given lengths has a very simple formula: it is nk−1 where n is the rank of the underlying symmetric group and k is the number of factors. In particular, this is nn−2 for transposition factorizations. The goal of this work is to prove a multivariate generalization of this result. As a byproduct, we get a multivariate analog of Postnikov's hook length formula for trees, and a refined enumeration of final chains of noncrossing partitions.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Soojin Cho ◽  
Kyoungsuk Park

International audience Alignments, crossings and inversions of signed permutations are realized in the corresponding permutation tableaux of type $B$, and the cycles of signed permutations are understood in the corresponding bare tableaux of type $B$. We find the relation between the number of alignments, crossings and other statistics of signed permutations, and also characterize the covering relation in weak Bruhat order on Coxeter system of type $B$ in terms of permutation tableaux of type $B$. De nombreuses statistiques importantes des permutations signées sont réalisées dans les tableaux de permutations ou ”bare” tableaux de type $B$ correspondants : les alignements, croisements et inversions des permutations signées sont réalisés dans les tableaux de permutations de type $B$ correspondants, et les cycles des permutations signées sont comprises dans les ”bare” tableaux de type $B$ correspondants. Cela nous mène à relier le nombre d’alignements et de croisements avec d’autres statistiques des permutations signées, et aussi de caractériser la relation de couverture dans l’ordre de Bruhat faible sur des systèmes de Coxeter de type $B$ en termes de tableaux de permutations de type $B$.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Gaku Liu

International audience In this extended abstract we consider mixed volumes of combinations of hypersimplices. These numbers, called mixed Eulerian numbers, were first considered by A. Postnikov and were shown to satisfy many properties related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a general combinatorial interpretation for mixed Eulerian numbers and prove the above properties combinatorially. In particular, we show that each mixed Eulerian number enumerates a certain set of permutations in $S_n$. We also prove several new properties of mixed Eulerian numbers using our methods. Finally, we consider a type $B$ analogue of mixed Eulerian numbers and give an analogous combinatorial interpretation for these numbers. Dans ce résumé étendu nous considérons les volumes mixtes de combinaisons d’hyper-simplexes. Ces nombres, appelés les nombres Eulériens mixtes, ont été pour la première fois étudiés par A. Postnikov, et il a été montré qu’ils satisfont à de nombreuses propriétés reliées aux nombres Eulériens, au nombres de Catalan, aux coefficients binomiaux, etc. Nous donnons une interprétation combinatoire générale des nombres Eulériens mixtes, et nous prouvons combinatoirement les propriétés mentionnées ci-dessus. En particulier, nous montrons que chaque nombre Eulérien mixte compte les éléments d’un certain sous-ensemble de l’ensemble des permutations $S_n$. Nous établissons également plusieurs nouvelles propriétés des nombres Eulériens mixtes grâce à notre méthode. Pour finir, nous introduisons une généralisation en type $B$ des nombres Eulériens mixtes, et nous en donnons une interprétation combinatoire analogue.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Charles Buehrle ◽  
Mark Skandera

International audience We use the polynomial ring $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ to modify the Kazhdan-Lusztig construction of irreducible $S_n$-modules. This modified construction produces exactly the same matrices as the original construction in [$\textit{Invent. Math}$ $\mathbf{53}$ (1979)], but does not employ the Kazhdan-Lusztig preorders. We also show that our modules are related by unitriangular transition matrices to those constructed by Clausen in [$\textit{J. Symbolic Comput.}$ $\textbf{11}$ (1991)]. This provides a $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$-analog of results of Garsia-McLarnan in [$\textit{Adv. Math.}$ $\textbf{69}$ (1988)]. Nous utilisons l'anneau $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ pour modifier la construction Kazhdan-Lusztig des modules-$S_n$ irréductibles dans $\mathbb{C}[S_n]$. Cette construction modifiée produit exactement les mêmes matrices que la construction originale dans [$\textit{Invent. Math}$ $\mathbf{53}$ (1979)], mais sans employer les préordres de Kazhdan-Lusztig. Nous montrons aussi que nos modules sont reliés par des matrices unitriangulaires aux modules construits par Clausen dans [$\textit{J. Symbolic Comput.}$ $\textbf{11}$ (1991)]. Ce résultat donne un $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$-analogue des résultats de Garsia-McLarnan dans [$\textit{Adv. Math.}$ $\textbf{69}$ (1988)].


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Geir Helleloid ◽  
Fernando Rodriguez-Villegas

International audience Let $\Gamma$ be a quiver on $n$ vertices $v_1, v_2, \ldots , v_n$ with $g_{ij}$ edges between $v_i$ and $v_j$, and let $\boldsymbol{\alpha} \in \mathbb{N}^n$. Hua gave a formula for $A_{\Gamma}(\boldsymbol{\alpha}, q)$, the number of isomorphism classes of absolutely indecomposable representations of $\Gamma$ over the finite field $\mathbb{F}_q$ with dimension vector $\boldsymbol{\alpha}$. We use Hua's formula to show that the derivatives of $A_{\Gamma}(\boldsymbol{\alpha}, q)$ with respect to $q$, when evaluated at $q = 1$, are polynomials in the variables $g_{ij}$, and we can compute the highest degree terms in these polynomials. The formulas for these coefficients depend on the enumeration of certain families of connected graphs. This note simply gives an overview of these results; a complete account of this research is available on the arXiv and has been submitted for publication. Soit $\Gamma$ un carquois sur $n$ sommets $ v_1, v_2, \ldots , v_n$ avec $g_{ij}$ arêtes entre $v_i$ et $v_j$, et soit $\boldsymbol{\alpha} \in \mathbb{N}^n$. Hua a donné une formule pour $A_{\Gamma}(\boldsymbol{\alpha}, q)$, le nombre de classes d'isomorphisme absolument indécomposables de représentations de $\Gamma$ sur le corps fini $\mathbb{F}_q$ avec vecteur de dimension $\boldsymbol{\alpha}$. Nous utilisons la formule de Hua pour montrer que les dérivées de $A_{\Gamma}(\boldsymbol{\alpha}, q)$ par rapport à $q$, alors évaluée à $q=1$, sont des polynômes dans les variables $g_{ij}$, et on peut calculer les termes de plus haut degré de ces polynômes. Les formules pour ces coefficients dépendent de l'énumération de certaines familles de graphes connectés. Cette note donne simplement un aperçu de ces résultats, un compte rendu complet de cette recherche est disponible sur arXiv et a été soumis pour publication.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Gábor Hetyei

International audience We introduce the short toric polynomial associated to a graded Eulerian poset. This polynomial contains the same information as Stanley's pair of toric polynomials, but allows different algebraic manipulations. Stanley's intertwined recurrence may be replaced by a single recurrence, in which the degree of the discarded terms is independent of the rank. A short toric variant of the formula by Bayer and Ehrenborg, expressing the toric h-vector in terms of the cd-index, may be stated in a rank-independent form, and it may be shown using weighted lattice path enumeration and the reflection principle. We use our techniques to derive a formula expressing the toric h-vector of a dual simplicial Eulerian poset in terms of its f-vector. This formula implies Gessel's formula for the toric h-vector of a cube, and may be used to prove that the nonnegativity of the toric h-vector of a simple polytope is a consequence of the Generalized Lower Bound Theorem holding for simplicial polytopes. Nous introduisons le polynôme torique court associé à un ensemble ordonné Eulérien. Ce polynôme contient la même information que le couple de polynômes toriques de Stanley, mais il permet des manipulations algébriques différentes. La récurrence entrecroisée de Stanley peut être remplacée par une seule récurrence dans laquelle le degré des termes écartés est indépendant du rang. La variante torique courte de la formule de Bayer et Ehrenborg, qui exprime le vecteur torique d'un ensemble ordonné Eulérien en termes de son cd-index, est énoncée sous une forme qui ne dépend pas du rang et qui peut être démontrée en utilisant une énumération des chemins pondérés et le principe de réflexion. Nous utilisons nos techniques pour dériver une formule exprimant le vecteur h-torique d'un ensemble ordonné Eulérien dont le dual est simplicial, en termes de son f-vecteur. Cette formule implique la formule de Gessel pour le vecteur h-torique d'un cube, et elle peut être utilisée pour démontrer que la positivité du vecteur h-torique d'un polytope simple est une conséquence du Théorème de la Borne Inférieure Généralisé appliqué aux polytopes simpliciaux.


Sign in / Sign up

Export Citation Format

Share Document