scholarly journals Binary Labelings for Plane Quadrangulations and their Relatives

2011 ◽  
Vol Vol. 12 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Stefan Felsner ◽  
Clemens Huemer ◽  
Sarah Kappes ◽  
David Orden

Graphs and Algorithms International audience Motivated by the bijection between Schnyder labelings of a plane triangulation and partitions of its inner edges into three trees, we look for binary labelings for quadrangulations (whose edges can be partitioned into two trees). Our labeling resembles many of the properties of Schnyder's one for triangulations: Apart from being in bijection with tree decompositions, paths in these trees allow to define the regions of a vertex such that counting faces in them yields an algorithm for embedding the quadrangulation, in this case on a 2-book. Furthermore, as Schnyder labelings have been extended to 3-connected plane graphs, we are able to extend our labeling from quadrangulations to a larger class of 2-connected bipartite graphs.

2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Audrey Lee ◽  
Ileana Streinu

International audience A multi-graph $G$ on n vertices is $(k,l)$-sparse if every subset of $n'≤n$ vertices spans at most $kn'-l$ edges, $0 ≤l < 2k$. $G$ is tight if, in addition, it has exactly $kn - l$ edges. We characterize $(k,l)$-sparse graphs via a family of simple, elegant and efficient algorithms called the $(k,l)$-pebble games. As applications, we use the pebble games for computing components (maximal tight subgraphs) in sparse graphs, to obtain inductive (Henneberg) constructions, and, when $l=k$, edge-disjoint tree decompositions.


2015 ◽  
Vol Vol. 17 no.2 (Graph Theory) ◽  
Author(s):  
Martiniano Eguia ◽  
Francisco Soulignac

International audience In this article we deal with the problems of finding the disimplicial arcs of a digraph and recognizing some interesting graph classes defined by their existence. A <i>diclique</i> of a digraph is a pair $V$ &rarr; $W$ of sets of vertices such that $v$ &rarr; $w$ is an arc for every $v$ &isin; $V$ and $w$ &isin; $W$. An arc $v$ &rarr; $w$ is <i>disimplicial</i> when it belongs to a unique maximal diclique. We show that the problem of finding the disimplicial arcs is equivalent, in terms of time and space complexity, to that of locating the transitive vertices. As a result, an efficient algorithm to find the bisimplicial edges of bipartite graphs is obtained. Then, we develop simple algorithms to build disimplicial elimination schemes, which can be used to generate bisimplicial elimination schemes for bipartite graphs. Finally, we study two classes related to perfect disimplicial elimination digraphs, namely weakly diclique irreducible digraphs and diclique irreducible digraphs. The former class is associated to finite posets, while the latter corresponds to dedekind complete finite posets.


2014 ◽  
Vol Vol. 16 no. 3 ◽  
Author(s):  
Frederic Havet ◽  
Nagarajan Paramaguru ◽  
Rathinaswamy Sampathkumar

International audience For a connected graph G of order |V(G)| ≥3 and a k-labelling c : E(G) →{1,2,…,k} of the edges of G, the code of a vertex v of G is the ordered k-tuple (ℓ1,ℓ2,…,ℓk), where ℓi is the number of edges incident with v that are labelled i. The k-labelling c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-labelling is the detection number det(G) of G. In this paper, we show that it is NP-complete to decide if the detection number of a cubic graph is 2. We also show that the detection number of every bipartite graph of minimum degree at least 3 is at most 2. Finally, we give some sufficient condition for a cubic graph to have detection number 3.


2009 ◽  
Vol Vol. 11 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Janusz Adamus ◽  
Lech Adamus

Graphs and Algorithms International audience We conjecture Ore and Erdős type criteria for a balanced bipartite graph of order 2n to contain a long cycle C(2n-2k), where 0 <= k < n/2. For k = 0, these are the classical hamiltonicity criteria of Moon and Moser. The main two results of the paper assert that our conjectures hold for k = 1 as well.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Shuchao Li ◽  
Huihui Zhang ◽  
Xiaoyan Zhang

Graph Theory International audience A maximal independent set is an independent set that is not a proper subset of any other independent set. Liu [J.Q. Liu, Maximal independent sets of bipartite graphs, J. Graph Theory, 17 (4) (1993) 495-507] determined the largest number of maximal independent sets among all n-vertex bipartite graphs. The corresponding extremal graphs are forests. It is natural and interesting for us to consider this problem on bipartite graphs with cycles. Let \mathscrBₙ (resp. \mathscrBₙ') be the set of all n-vertex bipartite graphs with at least one cycle for even (resp. odd) n. In this paper, the largest number of maximal independent sets of graphs in \mathscrBₙ (resp. \mathscrBₙ') is considered. Among \mathscrBₙ the disconnected graphs with the first-, second-, \ldots, \fracn-22-th largest number of maximal independent sets are characterized, while the connected graphs in \mathscrBₙ having the largest, the second largest number of maximal independent sets are determined. Among \mathscrBₙ' graphs have the largest number of maximal independent sets are identified.


2006 ◽  
Vol Vol. 8 ◽  
Author(s):  
R. Balasubramanian ◽  
C.R. Subramanian

International audience We study the problem of efficiently sampling k-colorings of bipartite graphs. We show that a class of markov chains cannot be used as efficient samplers. Precisely, we show that, for any k, 6 ≤ k ≤ n^\1/3-ε \, ε > 0 fixed, \emphalmost every bipartite graph on n+n vertices is such that the mixing time of any markov chain asymptotically uniform on its k-colorings is exponential in n/k^2 (if it is allowed to only change the colors of O(n/k) vertices in a single transition step). This kind of exponential time mixing is called \emphtorpid mixing. As a corollary, we show that there are (for every n) bipartite graphs on 2n vertices with Δ (G) = Ω (\ln n) such that for every k, 6 ≤ k ≤ Δ /(6 \ln Δ ), each member of a large class of chains mixes torpidly. While, for fixed k, such negative results are implied by the work of CDF, our results are more general in that they allow k to grow with n. We also show that these negative results hold true for H-colorings of bipartite graphs provided H contains a spanning complete bipartite subgraph. We also present explicit examples of colorings (k-colorings or H-colorings) which admit 1-cautious chains that are ergodic and are shown to have exponential mixing time. While, for fixed k or fixed H, such negative results are implied by the work of CDF, our results are more general in that they allow k or H to vary with n.


2005 ◽  
Vol DMTCS Proceedings vol. AD,... (Proceedings) ◽  
Author(s):  
Gahyun Park ◽  
Wojciech Szpankowski

International audience For a given matrix of size $n \times m$ over a finite alphabet $\mathcal{A}$, a bicluster is a submatrix composed of selected columns and rows satisfying a certain property. In microarrays analysis one searches for largest biclusters in which selected rows constitute the same string (pattern); in another formulation of the problem one tries to find a maximally dense submatrix. In a conceptually similar problem, namely the bipartite clique problem on graphs, one looks for the largest binary submatrix with all '1'. In this paper, we assume that the original matrix is generated by a memoryless source over a finite alphabet $\mathcal{A}$. We first consider the case where the selected biclusters are square submatrices and prove that with high probability (whp) the largest (square) bicluster having the same row-pattern is of size $\log_Q^2 n m$ where $Q^{-1}$ is the (largest) probability of a symbol. We observe, however, that when we consider $\textit{any}$ submatrices (not just $\textit{square}$ submatrices), then the largest area of a bicluster jumps to $A_n$ (whp) where $A$ is an explicitly computable constant. These findings complete some recent results concerning maximal biclusters and maximum balanced bicliques for random bipartite graphs.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Xiumei Wang ◽  
Cheng He ◽  
Yixun Lin

Graph Theory International audience For a brick apart from a few small graphs, Lovász (1987) proposed a conjecture on the existence of an edge whose deletion results in a graph with only one brick in its tight cut decomposition. Carvalho, Lucchesi, and Murty (2002) confirmed this conjecture by showing the existence of such two edges. This paper generalizes the result obtained by Carvalho et al. to the case of irreducible near-brick, where a graph is irreducible if it contains no induced odd path of length 3 or more. Meanwhile, a lower bound on the number of removable edges of matching-covered bipartite graphs is presented.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Maciej Dolęga ◽  
Piotr Sniady

International audience We study the class of functions on the set of (generalized) Young diagrams arising as the number of embeddings of bipartite graphs. We give a criterion for checking when such a function is a polynomial function on Young diagrams (in the sense of Kerov and Olshanski) in terms of combinatorial properties of the corresponding bipartite graphs. Our method involves development of a differential calculus of functions on the set of generalized Young diagrams. Nous étudions la classe des fonctions sur l'ensemble des diagrammes de Young (généralisés) qui sont définies comme des nombres d'injections de graphes bipartites. Nous donnons un critère pour savoir si une telle fonction est une fonctions polynomiale sur les diagrammes de Young (au sens de Kerov et Olshanski) utilisant les propriétés combinatoires des graphes bipartites correspondants. Notre méthode repose sur le développement d'un calcul différentiel sur les fonctions sur les diagrammes de Young généralisés.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Valentin Féray

International audience Following the lead of Stanley and Gessel, we consider a linear map which associates to an acyclic directed graph (or a poset) a quasi-symmetric function. The latter is naturally defined as multivariate generating series of non-decreasing functions on the graph (or of P -partitions of the poset).We describe the kernel of this linear map, using a simple combinatorial operation that we call cyclic inclusion- exclusion. Our result also holds for the natural non-commutative analog and for the commutative and non-commutative restrictions to bipartite graphs.


Sign in / Sign up

Export Citation Format

Share Document