scholarly journals Convex Partitions of Graphs induced by Paths of Order Three

2010 ◽  
Vol Vol. 12 no. 5 (Graph and Algorithms) ◽  
Author(s):  
C. C. Centeno ◽  
S. Dantas ◽  
M. C. Dourado ◽  
Dieter Rautenbach ◽  
Jayme Luiz Szwarcfiter

Graphs and Algorithms International audience A set C of vertices of a graph G is P(3)-convex if v is an element of C for every path uvw in G with u, w is an element of C. We prove that it is NP-complete to decide for a given graph G and a given integer p whether the vertex set of G can be partitioned into p non-empty disjoint P(3)-convex sets. Furthermore, we study such partitions for a variety of graph classes.

2004 ◽  
Vol Vol. 6 no. 2 ◽  
Author(s):  
Vladimir E. Alekseev ◽  
Alastair Farrugia ◽  
Vadim V. Lozin

International audience For graph classes \wp_1,...,\wp_k, Generalized Graph Coloring is the problem of deciding whether the vertex set of a given graph G can be partitioned into subsets V_1,...,V_k so that V_j induces a graph in the class \wp_j (j=1,2,...,k). If \wp_1=...=\wp_k is the class of edgeless graphs, then this problem coincides with the standard vertex k-COLORABILITY, which is known to be NP-complete for any k≥ 3. Recently, this result has been generalized by showing that if all \wp_i's are additive hereditary, then the generalized graph coloring is NP-hard, with the only exception of bipartite graphs. Clearly, a similar result follows when all the \wp_i's are co-additive.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Martin Charles Golumbic ◽  
Marina Lipshteyn ◽  
Michal Stern

International audience Let $\mathcal{P}$ be a collection of nontrivial simple paths in a tree $T$. The edge intersection graph of $\mathcal{P}$, denoted by EPT($\mathcal{P}$), has vertex set that corresponds to the members of $\mathcal{P}$, and two vertices are joined by an edge if the corresponding members of $\mathcal{P}$ share a common edge in $T$. An undirected graph $G$ is called an edge intersection graph of paths in a tree, if $G = EPT(\mathcal{P})$ for some $\mathcal{P}$ and $T$. The EPT graphs are useful in network applications. Scheduling undirected calls in a tree or assigning wavelengths to virtual connections in an optical tree network are equivalent to coloring its EPT graph. It is known that recognition and coloring of EPT graphs are NP-complete problems. However, the EPT graphs restricted to host trees of vertex degree 3 are precisely the chordal EPT graphs, and therefore can be colored in polynomial time complexity. We prove a new analogous result that weakly chordal EPT graphs are precisely the EPT graphs with host tree restricted to degree 4. This also implies that the coloring of the edge intersection graph of paths in a degree 4 tree is polynomial. We raise a number of intriguing conjectures regarding related families of graphs.


2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Peter J. Dukes ◽  
Steve Lowdon ◽  
Gary Macgillivray

Graph Theory International audience We study partitions of the vertex set of a given graph into cells that each induce a subgraph in a given family, and for which edges can have ends in different cells only when those cells correspond to adjacent vertices of a fixed template graph H. For triangle-free templates, a general collection of graph families for which the partitioning problem can be solved in polynomial time is described. For templates with a triangle, the problem is in some cases shown to be NP-complete.


2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Oleg Duginov

Graph Theory International audience Given a graph and a positive integer k, the biclique vertex-partition problem asks whether the vertex set of the graph can be partitioned into at most k bicliques (connected complete bipartite subgraphs). It is known that this problem is NP-complete for bipartite graphs. In this paper we investigate the computational complexity of this problem in special subclasses of bipartite graphs. We prove that the biclique vertex-partition problem is polynomially solvable for bipartite permutation graphs, bipartite distance-hereditary graphs and remains NP-complete for perfect elimination bipartite graphs and bipartite graphs containing no 4-cycles as induced subgraphs.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Francesco M. Malvestuto

Given a connected hypergraph with vertex set V, a convexity space on is a subset of the powerset of V that contains ∅, V, and the singletons; furthermore, is closed under intersection and every set in is connected in . The members of are called convex sets. The convex hull of a subset X of V is the smallest convex set containing X. By a cluster of we mean any nonempty subset of V in which every two vertices are separated by no convex set. We say that a convexity space on is decomposable if it satisfies the following three axioms: (i) the maximal clusters of form an acyclic hypergraph, (ii) every maximal cluster of is a convex set, and (iii) for every nonempty vertex set X, a vertex does not belong to the convex hull of X if and only if it is separated from X by a convex cluster. We prove that a decomposable convexity space on is fully specified by the maximal clusters of in that (1) there is a closed formula which expresses the convex hull of a set in terms of certain convex clusters of and (2) is a convex geometry if and only if the subspaces of induced by maximal clusters of are all convex geometries. Finally, we prove the decomposability of some known convexities in graphs and hypergraphs taken from the literature (such as “monophonic” and “canonical” convexities in hypergraphs and “all-paths” convexity in graphs).


1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Andrzej Proskurowski ◽  
Jan Arne Telle

International audience We introduce q-proper interval graphs as interval graphs with interval models in which no interval is properly contained in more than q other intervals, and also provide a forbidden induced subgraph characterization of this class of graphs. We initiate a graph-theoretic study of subgraphs of q-proper interval graphs with maximum clique size k+1 and give an equivalent characterization of these graphs by restricted path-decomposition. By allowing the parameter q to vary from 0 to k, we obtain a nested hierarchy of graph families, from graphs of bandwidth at most k to graphs of pathwidth at most k. Allowing both parameters to vary, we have an infinite lattice of graph classes ordered by containment.


2008 ◽  
Vol Vol. 10 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Dariusz Dereniowski ◽  
Adam Nadolski

Graphs and Algorithms International audience We study two variants of edge-coloring of edge-weighted graphs, namely compact edge-coloring and circular compact edge-coloring. First, we discuss relations between these two coloring models. We prove that every outerplanar bipartite graph admits a compact edge-coloring and that the decision problem of the existence of compact circular edge-coloring is NP-complete in general. Then we provide a polynomial time 1:5-approximation algorithm and pseudo-polynomial exact algorithm for compact circular coloring of odd cycles and prove that it is NP-hard to optimally color these graphs. Finally, we prove that if a path P2 is joined by an edge to an odd cycle then the problem of the existence of a compact circular coloring becomes NP-complete.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Laurent Gourvès ◽  
Adria Lyra ◽  
Carlos A. Martinhon ◽  
Jérôme Monnot

Graph Theory International audience In this paper we deal from an algorithmic perspective with different questions regarding properly edge-colored (or PEC) paths, trails and closed trails. Given a c-edge-colored graph G(c), we show how to polynomially determine, if any, a PEC closed trail subgraph whose number of visits at each vertex is specified before hand. As a consequence, we solve a number of interesting related problems. For instance, given subset S of vertices in G(c), we show how to maximize in polynomial time the number of S-restricted vertex (resp., edge) disjoint PEC paths (resp., trails) in G(c) with endpoints in S. Further, if G(c) contains no PEC closed trails, we show that the problem of finding a PEC s-t trail visiting a given subset of vertices can be solved in polynomial time and prove that it becomes NP-complete if we are restricted to graphs with no PEC cycles. We also deal with graphs G(c) containing no (almost) PEC cycles or closed trails through s or t. We prove that finding 2 PEC s-t paths (resp., trails) with length at most L > 0 is NP-complete in the strong sense even for graphs with maximum degree equal to 3 and present an approximation algorithm for computing k vertex (resp., edge) disjoint PEC s-t paths (resp., trails) so that the maximum path (resp., trail) length is no more than k times the PEC path (resp., trail) length in an optimal solution. Further, we prove that finding 2 vertex disjoint s-t paths with exactly one PEC s-t path is NP-complete. This result is interesting since as proved in Abouelaoualim et. al.(2008), the determination of two or more vertex disjoint PEC s-t paths can be done in polynomial time. Finally, if G(c) is an arbitrary c-edge-colored graph with maximum vertex degree equal to four, we prove that finding two monochromatic vertex disjoint s-t paths with different colors is NP-complete. We also propose some related problems.


2010 ◽  
Vol Vol. 12 no. 1 ◽  
Author(s):  
Therese Biedl ◽  
Michal Stern

International audience Edge-intersection graphs of paths in grids are graphs that can be represented such that vertices are paths in a grid and edges between vertices of the graph exist whenever two grid paths share a grid edge. This type of graphs is motivated by applications in conflict resolution of paths in grid networks. In this paper, we continue the study of edge-intersection graphs of paths in a grid, which was initiated by Golumbic, Lipshteyn and Stern. We show that for any k, if the number of bends in each path is restricted to be at most k, then not all graphs can be represented. Then we study some graph classes that can be represented with k-bend paths, for small k. We show that every planar graph has a representation with 5-bend paths, every outerplanar graph has a representation with 3-bend paths, and every planar bipartite graph has a representation with 2-bend paths. We also study line graphs, graphs of bounded pathwidth, and graphs with -regular edge orientations.


2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Gabor Horvath ◽  
Csaba Szabo

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience We prove that the extended equivalence problem is solvable in polynomial time for finite nilpotent groups, and coNP-complete, otherwise. We prove that the extended equation solvability problem is solvable in polynomial time for finite nilpotent groups, and NP-complete, otherwise.


Sign in / Sign up

Export Citation Format

Share Document