scholarly journals Colouring the Square of the Cartesian Product of Trees

2011 ◽  
Vol Vol. 13 no. 2 (Graph and Algorithms) ◽  
Author(s):  
David R. Wood

Graphs and Algorithms International audience We prove upper and lower bounds on the chromatic number of the square of the cartesian product of trees. The bounds are equal if each tree has even maximum degree.

10.37236/6267 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Tim E. Wilson ◽  
David R. Wood

An anagram is a word of the form $WP$ where $W$ is a non-empty word and $P$ is a permutation of $W$. We study anagram-free graph colouring and give bounds on the chromatic number. Alon et al.[Random Structures & Algorithms 2002] asked whether anagram-free chromatic number is bounded by a function of the maximum degree. We answer  this question in the negative by constructing graphs with maximum degree 3 and unbounded anagram-free chromatic number. We also prove upper and lower bounds on the anagram-free chromatic number of trees in terms of their radius and pathwidth. Finally, we explore extensions to edge colouring and $k$-anagram-free colouring.


10.37236/160 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Daniel Král' ◽  
Douglas B. West

Let ${\cal G}$ be a class of graphs. A $d$-fold grid over ${\cal G}$ is a graph obtained from a $d$-dimensional rectangular grid of vertices by placing a graph from ${\cal G}$ on each of the lines parallel to one of the axes. Thus each vertex belongs to $d$ of these subgraphs. The class of $d$-fold grids over ${\cal G}$ is denoted by ${\cal G}^d$. Let $f({\cal G};d)=\max_{G\in{\cal G}^d}\chi(G)$. If each graph in ${\cal G}$ is $k$-colorable, then $f({\cal G};d)\le k^d$. We show that this bound is best possible by proving that $f({\cal G};d)=k^d$ when ${\cal G}$ is the class of all $k$-colorable graphs. We also show that $f({\cal G};d)\ge{\left\lfloor\sqrt{{d\over 6\log d}}\right\rfloor}$ when ${\cal G}$ is the class of graphs with at most one edge, and $f({\cal G};d)\ge {\left\lfloor{d\over 6\log d}\right\rfloor}$ when ${\cal G}$ is the class of graphs with maximum degree $1$.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050021
Author(s):  
Ghazale Ghazi ◽  
Freydoon Rahbarnia ◽  
Mostafa Tavakoli

This paper studies the 2-distance chromatic number of some graph product. A coloring of [Formula: see text] is 2-distance if any two vertices at distance at most two from each other get different colors. The minimum number of colors in the 2-distance coloring of [Formula: see text] is the 2-distance chromatic number and denoted by [Formula: see text]. In this paper, we obtain some upper and lower bounds for the 2-distance chromatic number of the rooted product, generalized rooted product, hierarchical product and we determine exact value for the 2-distance chromatic number of the lexicographic product.


Author(s):  
Yilun Shang

We consider the random graph modelG(w)for a given expected degree sequencew=(w1,w2,…,wn). Warmth, introduced by Brightwell and Winkler in the context of combinatorial statistical mechanics, is a graph parameter related to lower bounds of chromatic number. We present new upper and lower bounds on warmth ofG(w). In particular, the minimum expected degree turns out to be an upper bound of warmth when it tends to infinity and the maximum expected degreem=O(nα)with0<α<1/2.


2013 ◽  
Vol Vol. 15 no. 3 (Combinatorics) ◽  
Author(s):  
Crevel Bautista-Santiago ◽  
Javier Cano ◽  
Ruy Fabila-Monroy ◽  
David Flores-Peñaloza ◽  
Hernàn González-Aguilar ◽  
...  

Combinatorics International audience Let P be a set of n points in general position in the plane. A subset I of P is called an island if there exists a convex set C such that I = P \C. In this paper we define the generalized island Johnson graph of P as the graph whose vertex consists of all islands of P of cardinality k, two of which are adjacent if their intersection consists of exactly l elements. We show that for large enough values of n, this graph is connected, and give upper and lower bounds on its diameter.


2016 ◽  
Vol 59 (4) ◽  
pp. 705-720
Author(s):  
Yichao Chen ◽  
Xuluo Yin

AbstractThe thickness of a graph G is the minimum number of planar subgraphs whose union is G. A t-minimal graph is a graph of thickness t that contains no proper subgraph of thickness t. In this paper, upper and lower bounds are obtained for the thickness, t(G ⎕ H), of the Cartesian product of two graphs G and H, in terms of the thickness t(G) and t(H). Furthermore, the thickness of the Cartesian product of two planar graphs and of a t-minimal graph and a planar graph are determined. By using a new planar decomposition of the complete bipartite graph K4k,4k, the thickness of the Cartesian product of two complete bipartite graphs Kn,n and Kn,n is also given for n≠4k + 1.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 389
Author(s):  
Manal Ghanem ◽  
Hasan Al-Ezeh ◽  
Ala’a Dabbour

Let c be a proper k-coloring of a graph G. Let π = { R 1 , R 2 , … , R k } be the partition of V ( G ) induced by c, where R i is the partition class receiving color i. The color code c π ( v ) of a vertex v of G is the ordered k-tuple ( d ( v , R 1 ) , d ( v , R 2 ) , … , d ( v , R k ) ) , where d ( v , R i ) is the minimum distance from v to each other vertex u ∈ R i for 1 ≤ i ≤ k . If all vertices of G have distinct color codes, then c is called a locating k-coloring of G. The locating-chromatic number of G, denoted by χ L ( G ) , is the smallest k such that G admits a locating coloring with k colors. In this paper, we give a characterization of the locating chromatic number of powers of paths. In addition, we find sharp upper and lower bounds for the locating chromatic number of powers of cycles.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Guillaume Fertin ◽  
André Raspaud

International audience An acyclic coloring of a graph $G$ is a coloring of its vertices such that: (i) no two neighbors in $G$ are assigned the same color and (ii) no bicolored cycle can exist in $G$. The acyclic chromatic number of $G$ is the least number of colors necessary to acyclically color $G$, and is denoted by $a(G)$. We show that any graph of maximum degree $\Delta$ has acyclic chromatic number at most $\frac{\Delta (\Delta -1) }{ 2}$ for any $\Delta \geq 5$, and we give an $O(n \Delta^2)$ algorithm to acyclically color any graph of maximum degree $\Delta$ with the above mentioned number of colors. This result is roughly two times better than the best general upper bound known so far, yielding $a(G) \leq \Delta (\Delta -1) +2$. By a deeper study of the case $\Delta =5$, we also show that any graph of maximum degree $5$ can be acyclically colored with at most $9$ colors, and give a linear time algorithm to achieve this bound.


Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2091-2099
Author(s):  
Shuya Chiba ◽  
Yuji Nakano

In 2008, Alspach [The Wonderful Walecki Construction, Bull. Inst. Combin. Appl. 52 (2008) 7-20] defined the matching sequencibility of a graph G to be the largest integer k such that there exists a linear ordering of its edges so that every k consecutive edges in the linear ordering form a matching of G, which is denoted by ms(G). In this paper, we show that every graph G of size q and maximum degree ? satisfies 1/2?q/?+1? ? ms(G) ? ?q?1/??1? by using the edge-coloring of G, and we also improve this lower bound for some particular graphs. We further discuss the relationship between the matching sequencibility and a conjecture of Seymour about the existence of the kth power of a Hamilton cycle.


2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Selma Djelloul ◽  
Mekkia Kouider

International audience We study in graphs properties related to fault-tolerance in case a node fails. A graph G is k-self-repairing, where k is a non-negative integer, if after the removal of any vertex no distance in the surviving graph increases by more than k. In the design of interconnection networks such graphs guarantee good fault-tolerance properties. We give upper and lower bounds on the minimum number of edges of a k-self-repairing graph for prescribed k and n, where n is the order of the graph. We prove that the problem of finding, in a k-self-repairing graph, a spanning k-self-repairing subgraph of minimum size is NP-Hard.


Sign in / Sign up

Export Citation Format

Share Document