scholarly journals Asymptotic laws for knot diagrams

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Harrison Chapman

International audience We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and sampling them with the counting measure on from sets of a fixed number of vertices n. We prove that random rooted knot diagrams are highly composite and hence almost surely knotted (this is the analogue of the Frisch-Wasserman-Delbruck conjecture) and extend this to unrooted knot diagrams by showing that almost all knot diagrams are asymmetric. The model is similar to one of Dunfield, et al.


1993 ◽  
Vol 02 (03) ◽  
pp. 251-284 ◽  
Author(s):  
J. SCOTT CARTER ◽  
MASAHICO SAITO

A movie description of a surface embedded in 4-space is a sequence of knot and link diagrams obtained from a projection of the surface to 3-space by taking 2-dimensional cross sections perpendicular to a fixed direction. In the cross sections, an immersed collection of curves appears, and these are lifted to knot diagrams by using the projection direction from 4-space. We give a set of 15 moves to movies (called movie moves) such that two movies represent isotopic surfaces if and only if there is a sequence of moves from this set that takes one to the other. This result generalizes the Roseman moves which are moves on projections where a height function has not been specified. The first 7 of the movie moves are height function parametrized versions of those given by Roseman. The remaining 8 are moves in which the topology of the projection remains unchanged.



2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Velleda Baldoni ◽  
Nicole Berline ◽  
Brandon Dutra ◽  
Matthias Köppe ◽  
Michele Vergne ◽  
...  

International audience For a given sequence $\alpha = [\alpha_1,\alpha_2,\ldots , \alpha_N, \alpha_{N+1}]$ of $N+1$ positive integers, we consider the combinatorial function $E(\alpha)(t)$ that counts the nonnegative integer solutions of the equation $\alpha_1x_1+\alpha_2 x_2+ \ldots+ \alpha_Nx_N+ \alpha_{N+1}x_{N+1}=t$, where the right-hand side $t$ is a varying nonnegative integer. It is well-known that $E(\alpha)(t)$ is a quasipolynomial function of $t$ of degree $N$. In combinatorial number theory this function is known as the $\textit{denumerant}$. Our main result is a new algorithm that, for every fixed number $k$, computes in polynomial time the highest $k+1$ coefficients of the quasi-polynomial $E(\alpha)(t)$ as step polynomials of $t$. Our algorithm is a consequence of a nice poset structure on the poles of the associated rational generating function for $E(\alpha)(t)$ and the geometric reinterpretation of some rational generating functions in terms of lattice points in polyhedral cones. Experiments using a $\texttt{MAPLE}$ implementation will be posted separately. Considérons une liste $\alpha = [\alpha_1,\alpha_2,\ldots , \alpha_N, \alpha_{N+1}]$ de $N+1$ entiers positifs. Le dénumérant $E(\alpha)(t)$ est lafonction qui compte le nombre de solutions en entiers positifs ou nuls de l’équation $\sum^{N+1}_{i=1}x_i\alpha_i=t$, où $t$ varie dans les entiers positifs ou nuls. Il est bien connu que cette fonction est une fonction quasi-polynomiale de $t$, de degré $N$. Nous donnons un nouvel algorithme qui calcule, pour chaque entier fixé $k$ (mais $N$ n’est pas fixé, les $k+1$ plus hauts coefficients du quasi-polynôme $E(\alpha)(t)$ en termes de fonctions en dents de scie. Notre algorithme utilise la structure d’ensemble partiellement ordonné des pôles de la fonction génératrice de $E(\alpha)(t)$. Les $k+1$ plus hauts coefficients se calculent à l’aide de fonctions génératrices de points entiers dans des cônes polyèdraux de dimension inférieure ou égale à $k$.



2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Antoine Genitrini ◽  
Jakub Kozik ◽  
Grzegorz Matecki

International audience Within the language of propositional formulae built on implication and a finite number of variables $k$, we analyze the set of formulae which are classical tautologies but not intuitionistic (we call such formulae - Peirce's formulae). We construct the large family of so called simple Peirce's formulae, whose sequence of densities for different $k$ is asymptotically equivalent to the sequence $\frac{1}{ 2 k^2}$. We prove that the densities of the sets of remaining Peirce's formulae are asymptotically bounded from above by $\frac{c}{ k^3}$ for some constant $c \in \mathbb{R}$. The result justifies the statement that in the considered language almost all Peirce's formulae are simple. The result gives a partial answer to the question stated in the recent paper by H. Fournier, D. Gardy, A. Genitrini and M. Zaionc - although we have not proved the existence of the densities for Peirce's formulae, our result gives lower and upper bound for it (if it exists) and both bounds are asymptotically equivalent to $\frac{1}{ 2 k^2}$.



2013 ◽  
Vol 22 (13) ◽  
pp. 1350073 ◽  
Author(s):  
YOUNG HO IM ◽  
KYOUNG IL PARK

We introduce a parity of classical crossings of virtual link diagrams which extends the Gaussian parity of virtual knot diagrams and the odd writhe of virtual links that extends that of virtual knots introduced by Kauffman [A self-linking invariants of virtual knots, Fund. Math.184 (2004) 135–158]. Also, we introduce a multi-variable polynomial invariant for virtual links by using the parity of classical crossings, which refines the index polynomial introduced in [Index polynomial invariants of virtual links, J. Knot Theory Ramifications19(5) (2010) 709–725]. As consequences, we give some properties of our invariant, and raise some examples.



2018 ◽  
Vol 27 (06) ◽  
pp. 1850038
Author(s):  
Darlan Girao

We completely determine the splitting number of augmented links arising from knot and link diagrams in which each twist region has an even number of crossings. In the case of augmented links obtained from knot diagrams, we show that the splitting number is given by the size of a maximal collection of Boromean sublinks, any two of which have one component in common. The general case is stablished by considering the linking numbers between components of the augmented links. We also discuss the case when the augmented link arises from a link diagram in which twist regions may have an odd number of crossings.



2010 ◽  
Vol DMTCS Proceedings vol. AL,... (Proceedings) ◽  
Author(s):  
Martin Kutrib ◽  
Jonas Lefèvre ◽  
Andreas Malcher

International audience We investigate the descriptional complexity of basic operations on real-time one-way cellular automata with an unbounded as well well as a fixed number of cells. The size of the automata is measured by their number of states. Most of the bounds shown are tight in the order of magnitude, that is, the sizes resulting from the effective constructions given are optimal with respect to worst case complexity. Conversely, these bounds also show the maximal savings of size that can be achieved when a given minimal real-time OCA is decomposed into smaller ones with respect to a given operation. From this point of view the natural problem of whether a decomposition can algorithmically be solved is studied. It turns out that all decomposition problems considered are algorithmically unsolvable. Therefore, a very restricted cellular model is studied in the second part of the paper, namely, real-time one-way cellular automata with a fixed number of cells. These devices are known to capture the regular languages and, thus, all the problems being undecidable for general one-way cellular automata become decidable. It is shown that these decision problems are $\textsf{NLOGSPACE}$-complete and thus share the attractive computational complexity of deterministic finite automata. Furthermore, the state complexity of basic operations for these devices is studied and upper and lower bounds are given.



2012 ◽  
Vol Vol. 14 no. 2 ◽  
Author(s):  
Marie Albenque ◽  
Lucas Gerin

International audience This article deals with some stochastic population protocols, motivated by theoretical aspects of distributed computing. We modelize the problem by a large urn of black and white balls from which at every time unit a fixed number of balls are drawn and their colors are changed according to the number of black balls among them. When the time and the number of balls both tend to infinity the proportion of black balls converges to an algebraic number. We prove that, surprisingly enough, not every algebraic number can be ''computed'' this way.



2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Gohar Kyureghyan

International audience We consider the maps $f:\mathbb{F}_{2^n} →\mathbb{F}_{2^n}$ with the property that the set $\{ f(x+a)+ f(x): x ∈F_{2^n}\}$ is a hyperplane or a complement of hyperplane for every $a ∈\mathbb{F}_{2^n}^*$. The main goal of the talk is to show that almost all maps $f(x) = Σ_{b ∈B}c_b(x+b)^d$, where $B ⊂\mathbb{F}_{2^n}$ and $Σ_{b ∈B}c_b ≠0$, are not of that type. In particular, the only such power maps have exponents $2^i+2^j$ with $gcd(n, i-j)=1$. We give also a geometrical characterization of this maps.



2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Peter McNamara ◽  
Einar Steingrımsson

International audience The set of all permutations, ordered by pattern containment, forms a poset. This extended abstract presents the first explicit major results on the topology of intervals in this poset. We show that almost all (open) intervals in this poset have a disconnected subinterval and are thus not shellable. Nevertheless, there seem to be large classes of intervals that are shellable and thus have the homotopy type of a wedge of spheres. We prove this to be the case for all intervals of layered permutations that have no disconnected subintervals of rank 3 or more. We also characterize in a simple way those intervals of layered permutations that are disconnected. These results carry over to the poset of generalized subword order when the ordering on the underlying alphabet is a rooted forest. We conjecture that the same applies to intervals of separable permutations, that is, that such an interval is shellable if and only if it has no disconnected subinterval of rank 3 or more. We also present a simplified version of the recursive formula for the Möbius function of decomposable permutations given by Burstein et al.



2014 ◽  
Vol 23 (09) ◽  
pp. 1450049 ◽  
Author(s):  
Jinseok Cho ◽  
Hyuk Kim ◽  
Seonhwa Kim

Yokota suggested an optimistic limit method of the Kashaev invariants of hyperbolic knots and showed it determines the complex volumes of the knots. His method is very effective and gives almost combinatorial method of calculating the complex volumes. However, to describe the triangulation of the knot complement, he restricted his method to knot diagrams with certain conditions. Although these restrictions are general enough for any hyperbolic knots, we have to select a good diagram of the knot to apply his theory. In this paper, we suggest more combinatorial way to calculate the complex volumes of hyperbolic links using the modified optimistic limit method. This new method works for any link diagrams, and it is more intuitive, easy to handle and has natural geometric meaning.



Sign in / Sign up

Export Citation Format

Share Document