scholarly journals Sequence variations of the 1-2-3 conjecture and irregularity strength

2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Ben Seamone ◽  
Brett Stevens

Graph Theory International audience Karonski, Luczak, and Thomason (2004) conjecture that, for any connected graph G on at least three vertices, there exists an edge weighting from 1, 2, 3 such that adjacent vertices receive different sums of incident edge weights. Bartnicki, Grytczuk, and Niwcyk (2009) make a stronger conjecture, that each edge's weight may be chosen from an arbitrary list of size 3 rather than 1, 2, 3. We examine a variation of these conjectures, where each vertex is coloured with a sequence of edge weights. Such a colouring relies on an ordering of E(G), and so two variations arise - one where we may choose any ordering of E(G) and one where the ordering is fixed. In the former case, we bound the list size required for any graph. In the latter, we obtain a bound on list sizes for graphs with sufficiently large minimum degree. We also extend our methods to a list variation of irregularity strength, where each vertex receives a distinct sequence of edge weights.

2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Simon Mukwembi

Graph Theory International audience Let G be a finite connected graph. We give an asymptotically tight upper bound on the size of G in terms of order, radius and minimum degree. Our result is a strengthening of an old classical theorem of Vizing (1967) if minimum degree is prescribed.


2014 ◽  
Vol Vol. 16 no. 3 ◽  
Author(s):  
Frederic Havet ◽  
Nagarajan Paramaguru ◽  
Rathinaswamy Sampathkumar

International audience For a connected graph G of order |V(G)| ≥3 and a k-labelling c : E(G) →{1,2,…,k} of the edges of G, the code of a vertex v of G is the ordered k-tuple (ℓ1,ℓ2,…,ℓk), where ℓi is the number of edges incident with v that are labelled i. The k-labelling c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-labelling is the detection number det(G) of G. In this paper, we show that it is NP-complete to decide if the detection number of a cubic graph is 2. We also show that the detection number of every bipartite graph of minimum degree at least 3 is at most 2. Finally, we give some sufficient condition for a cubic graph to have detection number 3.


2019 ◽  
Vol 29 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Bo Ning ◽  
Xing Peng

AbstractThe famous Erdős–Gallai theorem on the Turán number of paths states that every graph with n vertices and m edges contains a path with at least (2m)/n edges. In this note, we first establish a simple but novel extension of the Erdős–Gallai theorem by proving that every graph G contains a path with at least $${{(s + 1){N_{s + 1}}(G)} \over {{N_s}(G)}} + s - 1$$ edges, where Nj(G) denotes the number of j-cliques in G for 1≤ j ≤ ω(G). We also construct a family of graphs which shows our extension improves the estimate given by the Erdős–Gallai theorem. Among applications, we show, for example, that the main results of [20], which are on the maximum possible number of s-cliques in an n-vertex graph without a path with ℓ vertices (and without cycles of length at least c), can be easily deduced from this extension. Indeed, to prove these results, Luo [20] generalized a classical theorem of Kopylov and established a tight upper bound on the number of s-cliques in an n-vertex 2-connected graph with circumference less than c. We prove a similar result for an n-vertex 2-connected graph with circumference less than c and large minimum degree. We conclude this paper with an application of our results to a problem from spectral extremal graph theory on consecutive lengths of cycles in graphs.


2021 ◽  
Vol vol. 23 no. 1 (Graph Theory) ◽  
Author(s):  
Peter Dankelmann ◽  
Alex Alochukwu

Let $G$ be a connected graph of order $n$.The Wiener index $W(G)$ of $G$ is the sum of the distances between all unordered pairs of vertices of $G$. In this paper we show that the well-known upper bound $\big( \frac{n}{\delta+1}+2\big) {n \choose 2}$ on the Wiener index of a graph of order $n$ and minimum degree $\delta$ [M. Kouider, P. Winkler, Mean distance and minimum degree. J. Graph Theory 25 no. 1 (1997)] can be improved significantly if the graph contains also a vertex of large degree. Specifically, we give the asymptotically sharp bound $W(G) \leq {n-\Delta+\delta \choose 2} \frac{n+2\Delta}{\delta+1}+ 2n(n-1)$ on the Wiener index of a graph $G$ of order $n$, minimum degree $\delta$ and maximum degree $\Delta$. We prove a similar result for triangle-free graphs, and we determine a bound on the Wiener index of $C_4$-free graphs of given order, minimum and maximum degree and show that it is, in some sense, best possible.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Louis DeBiasio ◽  
Safi Faizullah ◽  
Imdadullah Khan

Graph Theory International audience A classic theorem of Dirac from 1952 states that every graph with minimum degree at least n=2 contains a Hamiltonian cycle. In 1963, P´osa conjectured that every graph with minimum degree at least 2n=3 contains the square of a Hamiltonian cycle. In 1960, Ore relaxed the degree condition in the Dirac’s theorem by proving that every graph with deg(u) + deg(v) ≥ n for every uv =2 E(G) contains a Hamiltonian cycle. Recently, Chˆau proved an Ore-type version of P´osa’s conjecture for graphs on n ≥ n0 vertices using the regularity–blow-up method; consequently the n0 is very large (involving a tower function). Here we present another proof that avoids the use of the regularity lemma. Aside from the fact that our proof holds for much smaller n0, we believe that our method of proof will be of independent interest.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Akbar Davoodi ◽  
Behnaz Omoomi

Graph Theory International audience A k-edge-weighting of a graph G is a function w:E(G)→{1,…,k}. An edge-weighting naturally induces a vertex coloring c, where for every vertex v∈V(G), c(v)=∑e∼vw(e). If the induced coloring c is a proper vertex coloring, then w is called a vertex-coloring k-edge-weighting (VC k-EW). Karoński et al. (J. Combin. Theory Ser. B, 91 (2004) 151 13;157) conjectured that every graph admits a VC 3-EW. This conjecture is known as the 1-2-3-conjecture. In this paper, first, we study the vertex-coloring edge-weighting of the Cartesian product of graphs. We prove that if the 1-2-3-conjecture holds for two graphs G and H, then it also holds for G□H. Also we prove that the Cartesian product of connected bipartite graphs admits a VC 2-EW. Moreover, we present several sufficient conditions for a graph to admit a VC 2-EW. Finally, we explore some bipartite graphs which do not admit a VC 2-EW.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Michael A. Henning ◽  
Viroshan Naicker

Graph Theory International audience Let G be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, γt(G). A set S of vertices in G is a disjunctive total dominating set of G if every vertex is adjacent to a vertex of S or has at least two vertices in S at distance 2 from it. The disjunctive total domination number, γdt(G), is the minimum cardinality of such a set. We observe that γdt(G) ≤γt(G). Let G be a connected graph on n vertices with minimum degree δ. It is known [J. Graph Theory 35 (2000), 21 13;45] that if δ≥2 and n ≥11, then γt(G) ≤4n/7. Further [J. Graph Theory 46 (2004), 207 13;210] if δ≥3, then γt(G) ≤n/2. We prove that if δ≥2 and n ≥8, then γdt(G) ≤n/2 and we characterize the extremal graphs.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Jernej Azarija ◽  
Sandi Klavžar ◽  
Jaehun Lee ◽  
Yoomi Rho

Graph Theory International audience If f is a binary word and d a positive integer, then the generalized Fibonacci cube Qd(f) is the graph obtained from the d-cube Qd by removing all the vertices that contain f as a factor, while the generalized Lucas cube Qd(lucas(f)) is the graph obtained from Qd by removing all the vertices that have a circulation containing f as a factor. The Fibonacci cube Γd and the Lucas cube Λd are the graphs Qd(11) and Qd(lucas(11)), respectively. It is proved that the connectivity and the edge-connectivity of Γd as well as of Λd are equal to ⌊ d+2 / 3⌋. Connected generalized Lucas cubes are characterized and generalized Fibonacci cubes are proved to be 2-connected. It is asked whether the connectivity equals minimum degree also for all generalized Fibonacci/Lucas cubes. It was checked by computer that the answer is positive for all f and all d≤9.


2016 ◽  
Vol 08 (03) ◽  
pp. 1650040 ◽  
Author(s):  
Shaohui Wang ◽  
Bing Wei

Let [Formula: see text] be multiplicative Zagreb index of a graph [Formula: see text]. A connected graph is a cactus graph if and only if any two of its cycles have at most one vertex in common, which is a generalization of trees and has been the interest of researchers in the field of material chemistry and graph theory. In this paper, we use a new tool to obtain the upper and lower bounds of [Formula: see text] for all cactus graphs and characterize the corresponding extremal graphs.


10.37236/499 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Ingo Schiermeyer ◽  
Anders Yeo

For a graph $G$, let $\gamma(G)$ denote the domination number of $G$ and let $\delta(G)$ denote the minimum degree among the vertices of $G$. A vertex $x$ is called a bad-cut-vertex of $G$ if $G-x$ contains a component, $C_x$, which is an induced $4$-cycle and $x$ is adjacent to at least one but at most three vertices on $C_x$. A cycle $C$ is called a special-cycle if $C$ is a $5$-cycle in $G$ such that if $u$ and $v$ are consecutive vertices on $C$, then at least one of $u$ and $v$ has degree $2$ in $G$. We let ${\rm bc}(G)$ denote the number of bad-cut-vertices in $G$, and ${\rm sc}(G)$ the maximum number of vertex disjoint special-cycles in $G$ that contain no bad-cut-vertices. We say that a graph is $(C_4,C_5)$-free if it has no induced $4$-cycle or $5$-cycle. Bruce Reed [Paths, stars and the number three. Combin. Probab. Comput. 5 (1996), 277–295] showed that if $G$ is a graph of order $n$ with $\delta(G) \ge 3$, then $\gamma(G) \le 3n/8$. In this paper, we relax the minimum degree condition from three to two. Let $G$ be a connected graph of order $n \ge 14$ with $\delta(G) \ge 2$. As an application of Reed's result, we show that $\gamma(G) \le \frac{1}{8} ( 3n + {\rm sc}(G) + {\rm bc}(G))$. As a consequence of this result, we have that (i) $\gamma(G) \le 2n/5$; (ii) if $G$ contains no special-cycle and no bad-cut-vertex, then $\gamma(G) \le 3n/8$; (iii) if $G$ is $(C_4,C_5)$-free, then $\gamma(G) \le 3n/8$; (iv) if $G$ is $2$-connected and $d_G(u) + d_G(v) \ge 5$ for every two adjacent vertices $u$ and $v$, then $\gamma(G) \le 3n/8$. All bounds are sharp.


Sign in / Sign up

Export Citation Format

Share Document