scholarly journals Mathematical Modelling on Double Quarantine Process in the Spread and Stability of Covid-19

2020 ◽  
Author(s):  
Jangyadatta Behera ◽  
Aswin Kumar Rauta ◽  
Yerra Shankar Rao ◽  
Sairam Patnaik

Abstract In this paper, a mathematical model is proposed on the spread and control of corona virus disease2019 (COVID19) to ascertain the impact of pre quarantine for suspected individuals having travel history ,immigrants and new born cases in the susceptible class following the lockdown or shutdown rules and adopted the post quarantine process for infected class. Set of nonlinear ordinary differential equations (ODEs) are generated and parameters like natural mortality rate, rate of COVID-19 induced death, rate of immigrants, rate of transmission and recovery rate are integrated in the scheme. A detailed analysis of this model is conducted analytically and numerically. The local and global stability of the disease is discussed mathematically with the help of Basic Reproduction Number. The ODEs are solved numerically with the help of Runge-Kutta 4th order method and graphs are drawn using MATLAB software to validate the analytical result with numerical simulation. It is found that both results are in good agreement with the results available in the existing literatures. The stability analysis is performed for both disease free equilibrium and endemic equilibrium points. The theorems based on Routh-Hurwitz criteria and Lyapunov function are proved .It is found that the system is locally asymptotically stable at disease free and endemic equilibrium points for basic reproduction number less than one and globally asymptotically stable for basic reproduction number greater than one. Finding of this study suggest that COVID-19 would remain pandemic with the progress of time but would be stable in the long-term if the pre and post quarantine policy for asymptomatic and symptomatic individuals are implemented effectively followed by social distancing, lockdown and containment.

2017 ◽  
Vol 10 (07) ◽  
pp. 1750096 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Taj Wali Khan ◽  
Saeed Islam

In this paper, a dynamical system of a SEIQV mathematical model with nonlinear generalized incidence arising in biology is investigated. The stability of the disease-free and endemic equilibrium is discussed. The basic reproduction number of the model is obtained. We found that the disease-free and endemic equilibrium is stable locally as well as globally asymptotically stable. For [Formula: see text], the disease-free equilibrium is stable both locally and globally and for [Formula: see text], the endemic equilibrium is stable globally asymptotically. Finally, some numerical results are presented.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2007 ◽  
Vol 8 (3) ◽  
pp. 191-203 ◽  
Author(s):  
J. Tumwiine ◽  
J. Y. T. Mugisha ◽  
L. S. Luboobi

We use a model to study the dynamics of malaria in the human and mosquito population to explain the stability patterns of malaria. The model results show that the disease-free equilibrium is globally asymptotically stable and occurs whenever the basic reproduction number,R0is less than unity. We also note that whenR0>1, the disease-free equilibrium is unstable and the endemic equilibrium is stable. Numerical simulations show that recoveries and temporary immunity keep the populations at oscillation patterns and eventually converge to a steady state.


2010 ◽  
Vol 03 (03) ◽  
pp. 299-312 ◽  
Author(s):  
SHU-MIN GUO ◽  
XUE-ZHI LI ◽  
XIN-YU SONG

In this paper, an age-structured SEIS epidemic model with infectivity in incubative period is formulated and studied. The explicit expression of the basic reproduction number R0 is obtained. It is shown that the disease-free equilibrium is globally asymptotically stable if R0 < 1, at least one endemic equilibrium exists if R0 > 1. The stability conditions of endemic equilibrium are also given.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
F. Talay Akyildiz ◽  
Fehaid Salem Alshammari

AbstractThis paper investigates a new model on coronavirus-19 disease (COVID-19), that is complex fractional SIR epidemic model with a nonstandard nonlinear incidence rate and a recovery, where derivative operator with Mittag-Leffler kernel in the Caputo sense (ABC). The model has two equilibrium points when the basic reproduction number $R_{0} > 1$ R 0 > 1 ; a disease-free equilibrium $E_{0}$ E 0 and a disease endemic equilibrium $E_{1}$ E 1 . The disease-free equilibrium stage is locally and globally asymptotically stable when the basic reproduction number $R_{0} <1$ R 0 < 1 , we show that the endemic equilibrium state is locally asymptotically stable if $R_{0} > 1$ R 0 > 1 . We also prove the existence and uniqueness of the solution for the Atangana–Baleanu SIR model by using a fixed-point method. Since the Atangana–Baleanu fractional derivative gives better precise results to the derivative with exponential kernel because of having fractional order, hence, it is a generalized form of the derivative with exponential kernel. The numerical simulations are explored for various values of the fractional order. Finally, the effect of the ABC fractional-order derivative on suspected and infected individuals carefully is examined and compared with the real data.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Joko Harianto

This article discusses modifications to the SEIL model that involve logistical growth. This model is used to describe the dynamics of the spread of tuberculosis disease in the population. The existence of the model's equilibrium points and its local stability depends on the basic reproduction number. If the basic reproduction number is less than unity, then there is one equilibrium point that is locally asymptotically stable. The equilibrium point is a disease-free equilibrium point. If the basic reproduction number ranges from one to three, then there are two equilibrium points. The two equilibrium points are disease-free equilibrium and endemic equilibrium points. Furthermore, for this case, the endemic equilibrium point is locally asymptotically stable.


2021 ◽  
Vol 4 (2) ◽  
pp. 106-124
Author(s):  
Raqqasyi Rahmatullah Musafir ◽  
Agus Suryanto ◽  
Isnani Darti

We discuss the dynamics of new COVID-19 epidemic model by considering asymptomatic infections and the policies such as quarantine, protection (adherence to health protocols), and vaccination. The proposed model contains nine subpopulations: susceptible (S), exposed (E), symptomatic infected (I), asymptomatic infected (A), recovered (R), death (D), protected (P), quarantined (Q), and vaccinated (V ). We first show the non-negativity and boundedness of solutions. The equilibrium points, basic reproduction number, and stability of equilibrium points, both locally and globally, are also investigated analytically. The proposed model has disease-free equilibrium point and endemic equilibrium point. The disease-free equilibrium point always exists and is globally asymptotically stable if basic reproduction number is less than one. The endemic equilibrium point exists uniquely and is globally asymptotically stable if the basic reproduction number is greater than one. These properties have been confirmed by numerical simulations using the fourth order Runge-Kutta method. Numerical simulations show that the disease transmission rate of asymptomatic infection, quarantine rates, protection rate, and vaccination rates affect the basic reproduction number and hence also influence the stability of equilibrium points.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
El Mehdi Lotfi ◽  
Mehdi Maziane ◽  
Khalid Hattaf ◽  
Noura Yousfi

The aim of this paper is to study the dynamics of a reaction-diffusion SIR epidemic model with specific nonlinear incidence rate. The global existence, positivity, and boundedness of solutions for a reaction-diffusion system with homogeneous Neumann boundary conditions are proved. The local stability of the disease-free equilibrium and endemic equilibrium is obtained via characteristic equations. By means of Lyapunov functional, the global stability of both equilibria is investigated. More precisely, our results show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than or equal to unity, which leads to the eradication of disease from population. When the basic reproduction number is greater than unity, then disease-free equilibrium becomes unstable and the endemic equilibrium is globally asymptotically stable; in this case the disease persists in the population. Numerical simulations are presented to illustrate our theoretical results.


2020 ◽  
Vol 14 (2) ◽  
pp. 297-304
Author(s):  
Joko Harianto ◽  
Titik Suparwati ◽  
Inda Puspita Sari

Abstrak Artikel ini termasuk dalam ruang lingkup matematika epidemiologi. Tujuan ditulisnya artikel ini untuk mendeskripsikan dinamika lokal penyebaran suatu penyakit dengan beberapa asumsi yang diberikan. Dalam pembahasan, dianalisis titik ekuilibrium model epidemi SVIR dengan adanya imigrasi pada kompartemen vaksinasi. Dengan langkah pertama, model SVIR diformulasikan, kemudian titik ekuilibriumnya ditentukan, selanjutnya, bilangan reproduksi dasar ditentukan. Pada akhirnya, kestabilan titik ekuilibirum yang bergantung pada bilangan reproduksi dasar ditentukan secara eksplisit. Hasilnya adalah jika bilangan reproduksi dasar kurang dari satu maka terdapat satu titik ekuilbirum dan titik ekuilbrium tersebut stabil asimtotik lokal. Hal ini berarti bahwa dalam kondisi tersebut penyakit akan cenderung menghilang dalam populasi. Sebaliknya, jika bilangan reproduksi dasar lebih dari satu, maka terdapat dua titik ekuilibrium. Dalam kondisi ini, titik ekuilibrium endemik stabil asimtotik lokal dan titik ekuilibrium bebas penyakit tidak stabil. Hal ini berarti bahwa dalam kondisi tersebut penyakit akan tetap ada dalam populasi. Kata Kunci : Model SVIR, Stabil Asimtotik Lokal Abstract This article is included in the scope of mathematical epidemiology. The purpose of this article is to describe the dynamics of the spread of disease with some assumptions given. In this paper, we present an epidemic SVIR model with the presence of immigration in the vaccine compartment. First, we formulate the SVIR model, then the equilibrium point is determined, furthermore, the basic reproduction number is determined. In the end, the stability of the equilibrium point is determined depending on the number of basic reproduction. The result is that if the basic reproduction number is less than one then there is a unique equilibrium point and the equilibrium point is locally asymptotically stable. This means that in those conditions the disease will tend to disappear in the population. Conversely, if the basic reproduction number is more than one, then there are two equilibrium points. The endemic equilibrium point is locally asymptotically stable and the disease-free equilibrium point is unstable. This means that in those conditions the disease will remain in the population. Keywords: SVIR Model, Locally Asymptotically stable.


Author(s):  
Tanvi ◽  
Mohammad Sajid ◽  
Rajiv Aggarwal ◽  
Ashutosh Rajput

In this paper, we have proposed a nonlinear mathematical model of different classes of individuals for coronavirus (COVID-19). The model incorporates the effect of transmission and treatment on the occurrence of new infections. For the model, the basic reproduction number [Formula: see text] has been computed. Corresponding to the threshold quantity [Formula: see text], the stability of endemic and disease-free equilibrium (DFE) points are determined. For [Formula: see text], if the endemic equilibrium point exists, then it is locally asymptotically stable, whereas the DFE point is globally asymptotically stable for [Formula: see text] which implies the eradication of the disease. The effects of various parameters on the spread of COVID-19 are discussed in the segment of sensitivity analysis. The model is numerically simulated to understand the effect of reproduction number on the transmission dynamics of the disease COVID-19. From the numerical simulations, it is concluded that if the reproduction number for the coronavirus disease is reduced below unity by decreasing the transmission rate and detecting more number of infectives, then the epidemic can be eradicated from the population.


Sign in / Sign up

Export Citation Format

Share Document