scholarly journals PERBANDINGAN METODE EXPONENTIAL SMOOTHING DAN ARIMA PADA PERAMALAN GARIS KEMISKINAN PROVINSI JAWA TENGAH

Author(s):  
Afifah Zahrunnisa ◽  
Renanta Dzakiya Nafalana ◽  
Istina Alya Rosyada ◽  
Edy Widodo

Forecasting is a technique that uses past data or historical data to determine something in the future. Forecasting methods with time series models consist of several methods, such as Double Exponential Smoothing (Holt method) and ARIMA. DES (Holt method) is a method that is used to predict time series data that has a trend pattern. ARIMA model combines AR and MA models with differencing order d. The poverty line is calculated by finding the total cost of all the essential resources that an average human adult consumes in one year. The lack of poverty reduction in an area is the lack of information about poverty. The selection of the forecasting method was made by considering several things. The Exponential Smoothing method was chosen because this method was able to predict time series financial data well and revise prediction errors. While the ARIMA method is better for short-term prediction, it can predict values that are difficult to explain by economic theory and are efficient in predicting time series financial data. There is still little research on comparing time series data for forecasting methods. Researchers are interested in comparing the Exponential Smoothing and ARIMA methods in implementing poverty line forecasting in Central Java. The two methods are compared by determining the best method for forecasting the poverty line in Central Java. The best forecasting method can be seen from the MAPE value of each method

Transport ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 354-363
Author(s):  
Anna Borucka ◽  
Dariusz Mazurkiewicz ◽  
Eliza Łagowska

Effective planning and optimization of rail transport operations depends on effective and reliable forecasting of demand. The results of transport performance forecasts usually differ from measured values because the mathematical models used are inadequate. In response to this applicative need, we report the results of a study whose goal was to develop, on the basis of historical data, an effective mathematical model of rail passenger transport performance that would allow to make reliable forecasts of future demand for this service. Several models dedicated to this type of empirical data were proposed and selection criteria were established. The models used in the study are: the seasonal naive model, the Exponential Smoothing (ETS) model, the exponential smoothing state space model with Box–Cox transformation, ARMA errors, trigonometric trend and seasonal components (TBATS) model, and the AutoRegressive Integrated Moving Average (ARIMA) model. The proposed time series identification and forecasting methods are dedicated to the processing of time series data with trend and seasonality. Then, the best model was identified and its accuracy and effectiveness were assessed. It was noticed that investigated time series is characterized by strong seasonality and an upward trend. This information is important for planning a development strategy for rail passenger transport, because it shows that additional investments and engagement in the development of both transport infrastructure and superstructure are required to meet the existing demand. Finally, a forecast of transport performance in sequential periods of time was presented. Such forecast may significantly improve the system of scheduling train journeys and determining the level of demand for rolling stock depending on the season and the annual rise in passenger numbers, increasing the effectiveness of management of rail transport.


Author(s):  
Isra Al-Turaiki ◽  
Fahad Almutlaq ◽  
Hend Alrasheed ◽  
Norah Alballa

COVID-19 is a disease-causing coronavirus strain that emerged in December 2019 that led to an ongoing global pandemic. The ability to anticipate the pandemic’s path is critical. This is important in order to determine how to combat and track its spread. COVID-19 data is an example of time-series data where several methods can be applied for forecasting. Although various time-series forecasting models are available, it is difficult to draw broad theoretical conclusions regarding their relative merits. This paper presents an empirical evaluation of several time-series models for forecasting COVID-19 cases, recoveries, and deaths in Saudi Arabia. In particular, seven forecasting models were trained using autoregressive integrated moving average, TBATS, exponential smoothing, cubic spline, simple exponential smoothing Holt, and HoltWinters. The models were built using publicly available daily data of COVID-19 during the period of 24 March 2020 to 5 April 2021 reported in Saudi Arabia. The experimental results indicate that the ARIMA model had a smaller prediction error in forecasting confirmed cases, which is consistent with results reported in the literature, while cubic spline showed better predictions for recoveries and deaths. As more data become available, a fluctuation in the forecasting-accuracy metrics was observed, possibly due to abrupt changes in the data.


2021 ◽  
Vol 13 (2) ◽  
pp. 155
Author(s):  
Dwi Anggraeni ◽  
Sri Maryani ◽  
Suseno Ariadhy

Poverty is a major problem in a country. The Indonesian government has made various efforts to tackle the problem of poverty. The main problem faced in poverty alleviation is the large number of people living below the poverty line. Therefore, this study aims to predict the poverty line in Purbalingga Regency for the next three periods as one of the efforts that can be made by the government in poverty alleviation. The method used in this study is a one-parameter linear double exponential smoothing from Brown. The software used in this research is Zaitun Time Series and Microsoft Excel. The steps taken are determining the forecasting objectives, plotting time series data, determining the appropriate method, determining the optimum parameter value, calculating the single exponential smoothing value, calculating double exponential smoothing value, calculate the smoothing constant value, calculate the trend coefficient value and perform forecasting. Based on the calculation results, the optimum alpha parameter value is 0.7 with MAPE value of 1.67866%, which means that this forecasting model has a very good performance. The forecast value of the poverty line in Purbalingga Regency for 2021 is Rp. 396,516, in 2022 it is Rp. 417,818, and in 2023 it is Rp. 439,120.


2020 ◽  
Vol 17 (2) ◽  
pp. 166-177
Author(s):  
Laila Qadrini ◽  
Asrirawan Asrirawan ◽  
Nur Mahmudah ◽  
Muhammad Fahmuddin ◽  
Ihsan Fathoni Amri

There are various types of data, one of which is the time-series data. This data type is capable of predicting future data with a similar speed as the forecasting method of analysis.  This method is applied by Bank Indonesia (BI) in determining currency inflows and outflows in society. Moreover, Inflows and outflows of currency are monthly time-series data which are assumed to be influenced by time. In this study, several forecasting methods were used to predict this flow of currency including ARIMA, Time Series Regression (TSR), ARIMAX, and NN. Furthermore, RMSE accuracy was used in selecting the best method for predicting the currency flow. The results showed that the ARIMAX method was the best for forecasting because this method had the smallest RMSE.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 360-374
Author(s):  
Yuan Pei ◽  
Lei Zhenglin ◽  
Zeng Qinghui ◽  
Wu Yixiao ◽  
Lu Yanli ◽  
...  

Abstract The load of the showcase is a nonlinear and unstable time series data, and the traditional forecasting method is not applicable. Deep learning algorithms are introduced to predict the load of the showcase. Based on the CEEMD–IPSO–LSTM combination algorithm, this paper builds a refrigerated display cabinet load forecasting model. Compared with the forecast results of other models, it finally proves that the CEEMD–IPSO–LSTM model has the highest load forecasting accuracy, and the model’s determination coefficient is 0.9105, which is obviously excellent. Compared with other models, the model constructed in this paper can predict the load of showcases, which can provide a reference for energy saving and consumption reduction of display cabinet.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  


2014 ◽  
Vol 26 (1-2) ◽  
pp. 47-56
Author(s):  
Murshida Khanam ◽  
Umme Hafsa

An attempt has been made to study various models regarding watermelon production in Bangladesh and to identify the best model that may be used for forecasting purposes. Here, supply, log linear, ARIMA, MARMA models have been used to do a statistical analysis and forecasting behavior of production of watermelon in Bangladesh by using time series data covering whole Bangladesh. It has been found that, between the supply and log linear models; log linear is the best model. Comparing ARIMA and MARMA models it has been concluded that ARIMA model is the best for forecasting purposes. DOI: http://dx.doi.org/10.3329/bjsr.v26i1-2.20230 Bangladesh J. Sci. Res. 26(1-2): 47-56, December-2013


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yihuai Huang ◽  
Chao Xu ◽  
Mengzhong Ji ◽  
Wei Xiang ◽  
Da He

Abstract Background Accurate forecasting of medical service demand is beneficial for the reasonable healthcare resource planning and allocation. The daily outpatient volume is characterized by randomness, periodicity and trend, and the time series methods, like ARIMA are often used for short-term outpatient visits forecasting. Therefore, to further enlarge the prediction horizon and improve the prediction accuracy, a hybrid prediction model integrating ARIMA and self-adaptive filtering method is proposed. Methods The ARIMA model is first used to identify the features like cyclicity and trend of the time series data and to estimate the model parameters. The parameters are then adjusted by the steepest descent algorithm in the adaptive filtering method to reduce the prediction error. The hybrid model is validated and compared with traditional ARIMA by several test sets from the Time Series Data Library (TSDL), a weekly emergency department (ED) visit case from literature study, and the real cases of prenatal examinations and B-ultrasounds in a maternal and child health care center (MCHCC) in Ningbo. Results For TSDL cases the prediction accuracy of the hybrid prediction is improved by 80–99% compared with the ARIMA model. For the weekly ED visit case, the forecasting results of the hybrid model are better than those of both traditional ARIMA and ANN model, and similar to the ANN combined data decomposition model mentioned in the literature. For the actual data of MCHCC in Ningbo, the MAPE predicted by the ARIMA model in the two departments was 18.53 and 27.69%, respectively, and the hybrid models were 2.79 and 1.25%, respectively. Conclusions The hybrid prediction model outperforms the traditional ARIMA model in both accurate predicting result with smaller average relative error and the applicability for short-term and medium-term prediction.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yanhui Chen ◽  
Bin Liu ◽  
Tianzi Wang

PurposeThis paper applied grey wave forecasting in a decomposition–ensemble forecasting method for modelling the complex and non-linear features in time series data. This application aims to test the advantages of grey wave forecasting method in predicting time series with periodic fluctuations.Design/methodology/approachThe decomposition–ensemble method combines empirical mode decomposition (EMD), component reconstruction technology and grey wave forecasting. More specifically, EMD is used to decompose time series data into different intrinsic mode function (IMF) components in the first step. Permutation entropy and the average of each IMF are checked for component reconstruction. Then the grey wave forecasting model or ARMA is used to predict each IMF according to the characters of each IMF.FindingsIn the empirical analysis, the China container freight index (CCFI) is applied in checking prediction performance. Using two different time periods, the results show that the proposed method performs better than random walk and ARMA in multi-step-ahead prediction.Originality/valueThe decomposition–ensemble method based on EMD and grey wave forecasting model expands the application area of the grey system theory and graphic forecasting method. Grey wave forecasting performs better for data set with periodic fluctuations. Forecasting CCFI assists practitioners in the shipping industry in decision-making.


2020 ◽  
Vol 9 (3) ◽  
pp. 306-315
Author(s):  
Febyani Rachim ◽  
Tarno Tarno ◽  
Sugito Sugito

Import is one of the efforts of an area to meet the needs of its population in order to stabilize prices and maintain stock availability. The value of imports in Central Java throughout 2016 amounted to 8811.05 Million US Dollars. The value of imports in Central Java is the top 10 in all provinces in Indonesia with a percentage of 6.50%. Import data in Central Java is included in the time series data category. To maintain the stability of imports in Central Java, it is deemed necessary to make a plan based on a statistical model. One of the time series models that can be applied is the fuzzy time series model with the Chen method approach and the S. R. Singh method because the method is suitable for cyclical patterned data with monthly time periods such as Import data in Central Java. Important concepts in the preparation of the model are fuzzy sets, membership functions, set basic operators, fuzzy variables, universe sets and domains. The fuzzy time series modeling procedure is carried out through several stages, namely the determination of universe discourse which is divided into several intervals, then defines the fuzzy set so that it can be performed fuzzification. After that the fuzzy logical relations and fuzzy logical group relations are determined. The accuracy calculation in both methods uses symmetric Mean Absolute Percentage Error (sMAPE). In this study the sMAPE value obtained in the Fuzzy Time Series Chen method of 10.95% means that it shows good forecasting ability. While the sMAPE value on the Fuzzy Time Series method of S. R. Singh method by 5.50% shows very good forecasting ability. It can be concluded that the sMAPE value in the S. R. Singh fuzzy time series method is better than the Chen method.Keywords: Import value, fuzzy time series , Chen, S. R. Singh, sMAPE


Sign in / Sign up

Export Citation Format

Share Document