scholarly journals PERAMALAN GARIS KEMISKINAN DI KABUPATEN PURBALINGGA TAHUN 2021-2023 DENGAN METODE DOUBLE EXPONENTIAL SMOOTHING LINIER SATU PARAMETER DARI BROWN

2021 ◽  
Vol 13 (2) ◽  
pp. 155
Author(s):  
Dwi Anggraeni ◽  
Sri Maryani ◽  
Suseno Ariadhy

Poverty is a major problem in a country. The Indonesian government has made various efforts to tackle the problem of poverty. The main problem faced in poverty alleviation is the large number of people living below the poverty line. Therefore, this study aims to predict the poverty line in Purbalingga Regency for the next three periods as one of the efforts that can be made by the government in poverty alleviation. The method used in this study is a one-parameter linear double exponential smoothing from Brown. The software used in this research is Zaitun Time Series and Microsoft Excel. The steps taken are determining the forecasting objectives, plotting time series data, determining the appropriate method, determining the optimum parameter value, calculating the single exponential smoothing value, calculating double exponential smoothing value, calculate the smoothing constant value, calculate the trend coefficient value and perform forecasting. Based on the calculation results, the optimum alpha parameter value is 0.7 with MAPE value of 1.67866%, which means that this forecasting model has a very good performance. The forecast value of the poverty line in Purbalingga Regency for 2021 is Rp. 396,516, in 2022 it is Rp. 417,818, and in 2023 it is Rp. 439,120.

2021 ◽  
Vol 3 (4) ◽  
pp. 45-53
Author(s):  
Tresna Maulana Fahrudin ◽  
Prismahardi Aji Riyantoko ◽  
Kartika Maulida Hindrayani ◽  
I Gede Susrama Mas Diyasa

Gold investment is currently a trend in society, especially the millennial generation. Gold investment for the younger generation is an advantage for the future. Gold bullion is often used as a promising investment, on other hand, the digital gold is available which it is stored online on the gold trading platform. However, any investment certainly has risks, and the price of gold bullion fluctuates from day to day. People who invest in gold hopes to benefit from the initial purchase price even if they must wait up to five years. The problem is how they can notice the best time to sell and buy gold. Therefore, this research proposes a forecasting approach based on time series data and the selling of gold bullion prices per gram in Indonesia. The experiment reported that Holt’s double exponential smoothing provided better forecasting performance than polynomial regression. Holt’s double exponential smoothing reached the minimum of Mean Absolute Percentage Error (MAPE) 0.056% in the training set, 0.047% in one-step testing, and 0.898% in multi-step testing.


2020 ◽  
Author(s):  
Teshome Hailemeskel Abebe

AbstractThe main objective of this study is to forecast COVID-19 case in Ethiopiausing the best-fitted model. The time series data of COVID-19 case in Ethiopia from March 14, 2020 to June 05, 2020 were used.To this end, exponential growth, single exponential smoothing method, and doubleexponential smoothing methodwere used. To evaluate the forecasting performance of the model, root mean sum of square error was used. The study showed that double exponential smoothing methods was appropriate in forecasting the future number ofCOVID-19 cases in Ethiopia as dictated by lowest value of root mean sum of square error. The forecasting model shows that the number of coronavirus cases in Ethiopia grows exponentially. The finding of the results would help the concerned stakeholders to make the right decisions based on the information given on forecasts.


2021 ◽  
Vol 3 (1) ◽  
pp. 37-51
Author(s):  
I Gusti Bagus Ngurah Diksa

ABSTRAKIndonesia dan Prancis adalah dua Negara yang mengalami Covid 19 dengan pola pergerakan kasus Covid 19 yang berbeda. Kondisi Indonesia masih mengalami siklus one wave namun Prancis sudah masuk pada pola second wave. Makna second wave adalah kondisi epidemi Covid 19 yang baru muncul setelah epidemi sebelumnya dianggap selesai. Dalam peramalan kasus Covid 19 baik itu terkait informasi puncak dari terjadinya kasus Covid 19 serta ramalan terkait akan berakhirnya pandemi kasus Covid 19 suatu negara merupakan hal penting bagi pemerintah suatu Negara. Model hybrid meningkatkan akurasi ramalan dibandingkan model time series yang dilakukan secara terpisah. Tujuan penelitian ini adalah melakukan peramalan kasus Covid 19 di Indonesia dan Prancis dengan menggunakan metode hybrid dan membandingkan dengan peramalan dengan salah satu metode tunggal. Metode yang digunakan adalah metode tunggal yaitu Nonlinear Regression Logistic dan metode Hybrid Nonlinear Regression Logistic–Double Eksponensial Smoothing. Hasilnya adalah model peramalan Hybrid Nonlinear Regression Logistic and Doubel Exponential Smoothing lebih bagus digunakan dalam peramalan kasus Covid 19 di Indonesia dan Prancis. Terlihat bahwa nilai MAPE model Hybrid Nonlinear Regression Logistic–Double Eksponensial Smoothing jauh lebih kecil dibandingkan model peramalan Nonlinear Regression Logistic. ABSTRACTIndonesia and France are two countries that have experienced Covid 19 with different patterns of movement of Covid 19 cases. Indonesia's condition is still experiencing a one wave cycle but France has entered into the second wave pattern. The meaning of the second wave is the condition of the Covid 19 epidemic which only emerged after the previous epidemic was considered over. In forecasting the Covid 19 case, whether it is related to the peak information on the occurrence of the Covid 19 case and predictions regarding the end of the pandemic of the Covid 19 case in a country, it is important for the government of a country. The hybrid model improves forecast accuracy compared to the time series model which is carried out separately. The purpose of this study is to forecast the cases of Covid 19 in Indonesia and France using the hybrid method and comparing with forecasting with one single method. The method used is a single method, namely Nonlinear Logistic Regression and Hybrid Nonlinear Regression Logistic-Double Exponential Smoothing methods. The result is that the Hybrid Nonlinear Regression Logistic and Double Exponential Smoothing forecasting model is better used in forecasting the Covid 19 cases in Indonesia and France. It can be seen that the MAPE value of the Hybrid Nonlinear Regression Logistic – Double Exponential Smoothing model is much smaller than the Nonlinear Regression Logistic forecasting model.


Author(s):  
M Asif Masood ◽  
Irum Raza ◽  
Saleem Abid

The present paper was designed to forecast wheat production for 2017-18, 2018-19 and 2019-2020 respectively by using time series data from 1971-72 to 2016-17 with best selected time series models. Linear, Quadratic, Exponential, S-Curve, Double Exponential Smoothing, Single exponential smoothing, Moving average and ARIMA were estimated for wheat production. The results showed a mix trend in production of wheat for selected time period. ARIMA (2,1,2) was found best one keeping in view close forecasts with actual reported wheat production. So the preference inclined towards the ARIMA (2,1,2) than quadratic to forecasts of wheat production.


Author(s):  
Afifah Zahrunnisa ◽  
Renanta Dzakiya Nafalana ◽  
Istina Alya Rosyada ◽  
Edy Widodo

Forecasting is a technique that uses past data or historical data to determine something in the future. Forecasting methods with time series models consist of several methods, such as Double Exponential Smoothing (Holt method) and ARIMA. DES (Holt method) is a method that is used to predict time series data that has a trend pattern. ARIMA model combines AR and MA models with differencing order d. The poverty line is calculated by finding the total cost of all the essential resources that an average human adult consumes in one year. The lack of poverty reduction in an area is the lack of information about poverty. The selection of the forecasting method was made by considering several things. The Exponential Smoothing method was chosen because this method was able to predict time series financial data well and revise prediction errors. While the ARIMA method is better for short-term prediction, it can predict values that are difficult to explain by economic theory and are efficient in predicting time series financial data. There is still little research on comparing time series data for forecasting methods. Researchers are interested in comparing the Exponential Smoothing and ARIMA methods in implementing poverty line forecasting in Central Java. The two methods are compared by determining the best method for forecasting the poverty line in Central Java. The best forecasting method can be seen from the MAPE value of each method


2021 ◽  
Vol 1 (1) ◽  
pp. 37-51
Author(s):  
I Gusti Bagus Ngurah Diksa

ABSTRAKIndonesia dan Prancis adalah dua Negara yang mengalami Covid 19 dengan pola pergerakan kasus Covid 19 yang berbeda. Kondisi Indonesia masih mengalami siklus one wave namun Prancis sudah masuk pada pola second wave. Makna second wave adalah kondisi epidemi Covid 19 yang baru muncul setelah epidemi sebelumnya dianggap selesai. Dalam peramalan kasus Covid 19 baik itu terkait informasi puncak dari terjadinya kasus Covid 19 serta ramalan terkait akan berakhirnya pandemi kasus Covid 19 suatu negara merupakan hal penting bagi pemerintah suatu Negara. Model hybrid meningkatkan akurasi ramalan dibandingkan model time series yang dilakukan secara terpisah. Tujuan penelitian ini adalah melakukan peramalan kasus Covid 19 di Indonesia dan Prancis dengan menggunakan metode hybrid dan membandingkan dengan peramalan dengan salah satu metode tunggal. Metode yang digunakan adalah metode tunggal yaitu Nonlinear Regression Logistic dan metode Hybrid Nonlinear Regression Logistic–Double Eksponensial Smoothing. Hasilnya adalah model peramalan Hybrid Nonlinear Regression Logistic and Doubel Exponential Smoothing lebih bagus digunakan dalam peramalan kasus Covid 19 di Indonesia dan Prancis. Terlihat bahwa nilai MAPE model Hybrid Nonlinear Regression Logistic–Double Eksponensial Smoothing jauh lebih kecil dibandingkan model peramalan Nonlinear Regression Logistic. ABSTRACTIndonesia and France are two countries that have experienced Covid 19 with different patterns of movement of Covid 19 cases. Indonesia's condition is still experiencing a one wave cycle but France has entered into the second wave pattern. The meaning of the second wave is the condition of the Covid 19 epidemic which only emerged after the previous epidemic was considered over. In forecasting the Covid 19 case, whether it is related to the peak information on the occurrence of the Covid 19 case and predictions regarding the end of the pandemic of the Covid 19 case in a country, it is important for the government of a country. The hybrid model improves forecast accuracy compared to the time series model which is carried out separately. The purpose of this study is to forecast the cases of Covid 19 in Indonesia and France using the hybrid method and comparing with forecasting with one single method. The method used is a single method, namely Nonlinear Logistic Regression and Hybrid Nonlinear Regression Logistic-Double Exponential Smoothing methods. The result is that the Hybrid Nonlinear Regression Logistic and Double Exponential Smoothing forecasting model is better used in forecasting the Covid 19 cases in Indonesia and France. It can be seen that the MAPE value of the Hybrid Nonlinear Regression Logistic – Double Exponential Smoothing model is much smaller than the Nonlinear Regression Logistic forecasting model.


Transport ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 354-363
Author(s):  
Anna Borucka ◽  
Dariusz Mazurkiewicz ◽  
Eliza Łagowska

Effective planning and optimization of rail transport operations depends on effective and reliable forecasting of demand. The results of transport performance forecasts usually differ from measured values because the mathematical models used are inadequate. In response to this applicative need, we report the results of a study whose goal was to develop, on the basis of historical data, an effective mathematical model of rail passenger transport performance that would allow to make reliable forecasts of future demand for this service. Several models dedicated to this type of empirical data were proposed and selection criteria were established. The models used in the study are: the seasonal naive model, the Exponential Smoothing (ETS) model, the exponential smoothing state space model with Box–Cox transformation, ARMA errors, trigonometric trend and seasonal components (TBATS) model, and the AutoRegressive Integrated Moving Average (ARIMA) model. The proposed time series identification and forecasting methods are dedicated to the processing of time series data with trend and seasonality. Then, the best model was identified and its accuracy and effectiveness were assessed. It was noticed that investigated time series is characterized by strong seasonality and an upward trend. This information is important for planning a development strategy for rail passenger transport, because it shows that additional investments and engagement in the development of both transport infrastructure and superstructure are required to meet the existing demand. Finally, a forecast of transport performance in sequential periods of time was presented. Such forecast may significantly improve the system of scheduling train journeys and determining the level of demand for rolling stock depending on the season and the annual rise in passenger numbers, increasing the effectiveness of management of rail transport.


2020 ◽  
Vol 2 (1) ◽  
pp. 128-145
Author(s):  
Yuafanda Kholfi Hartono ◽  
Sumarto Eka Putra

Indonesia Japan Economic Partnership Agreement (IJ-EPA) is a bilateral free-trade agreement between Indonesia and Japan that has been started from July 1st, 2008. After more than a decade of its implementation, there is a question that we need to be addressed: Does liberalization of IJ-EPA make Indonesia’s export to Japan increase? This question is important since the government gives a trade-off by giving lower tariff for certain commodities agreed in agreement to increase export. Using Interrupted time series (ITS) analysis based on time-series data from Statistics Indonesia (BPS), this article found that the impact of IJ-EPA decreased for Indonesia export to Japan. Furthermore, this paper proposed some potential commodities that can increase the effectiveness of this FTA. The importance of this topic is that Indonesia will maximize the benefit in implementing of agreement that they made from the third biggest destination export of their total export value, so it will be in line with the government's goal to expand export market to solve current account deficit. In addition, the method that used in this paper can be implemented to other countries so that they can maximize the effect of Free Trade Agreement, especially for their export.


2021 ◽  
Vol 8 (2) ◽  
pp. 117-122
Author(s):  
Sambas Sundana ◽  
Destri Zahra Al Gufronny

Permasalahan yang dihadapi PT. XYZ yaitu kesulitan dalam menentukan jumlah permintaan produk yang harus tersedia untuk periode berikutnya agar tetap dapat memenuhi kebutuhan pelanggan dan tidak menyebabkan penumpukan barang dalam jangka waktu yang lama terutama produk SN 5 ML yang memiliki permintaan jumlah paling besar dari produk lainnya. Tujuan dari penelitian ini yaitu menentukan metode peramalan yang tepat untuk meramalkan jumlah permintaan produk SN 5 ml periode Januari sampai dengan Desember 2021 Metode yang digunakan dalam penelitian ini yaitu metode peramalan Moving Average (MA), Weighted Moving Average (WMA), Single Exponential Smoothing (SES), dan Double Exponential Smoothing (DES). Adapun langkah langkah peramalan yang dilakukan yaitu menentukan tujuan peramalan,memilih unsur apa yang akan diramal, menentukan horizon waktu peramalan (pendek, menengah, atau panjang), memilih tipe model peramalan, mengumpulkan data yang di perlukan untuk melakukan peramalan, memvalidasi dan menerapkan hasil peramalan Berdasarkan perhitungan didapat metode peramalan dengan persentase tingkat kesalahan terkecil dibandingkan dengan metode lainnya yaitu  metode Moving Average (MA) dengan hasil yang diperoleh permintaan produk SN 5 ML pada bulan Januari sampai dengan Desember 2021 yaitu sebanyak 22.844.583 unit


Author(s):  
Handan Ankaralı ◽  
Nadire Erarslan ◽  
Özge Pasin ◽  
Abu Kholdun Al Mahmood

Objective: The coronavirus, which originated in Wuhan, causing the disease called COVID-19, spread more than 200 countries and continents end of the March. In this study, it was aimed to model the outbreak with different time series models and also predict the indicators. Materials and Methods: The data was collected from 25 countries which have different process at least 20 days. ARIMA(p,d,q), Simple Exponential Smoothing, Holt’s Two Parameter, Brown’s Double Exponential Smoothing Models were used. The prediction and forecasting values were obtained for the countries. Trends and seasonal effects were also evaluated. Results and Discussion: China has almost under control according to forecasting. The cumulative death prevalence in Italy and Spain will be the highest, followed by the Netherlands, France, England, China, Denmark, Belgium, Brazil and Sweden respectively as of the first week of April. The highest daily case prevalence was observed in Belgium, America, Canada, Poland, Ireland, Netherlands, France and Israel between 10% and 12%.The lowest rate was observed in China and South Korea. Turkey was one of the leading countries in terms of ranking these criteria. The prevalence of the new case and the recovered were higher in Spain than Italy. Conclusion: More accurate predictions for the future can be obtained using time series models with a wide range of data from different countries by modelling real time and retrospective data. Bangladesh Journal of Medical Science Vol.19(0) 2020 p.06-20


Sign in / Sign up

Export Citation Format

Share Document