scholarly journals Dietetic supplementation of weaning piglets with caramel plant wastewater: growth and components of the insulin-like growth factor axis

1969 ◽  
Vol 89 (3-4) ◽  
pp. 123-132
Author(s):  
Melvin Pagán ◽  
María de los M. Soltero ◽  
María d el P. Díaz ◽  
Carmen Santana ◽  
Abner A. Rodríguez

An experiment was conducted to evaluate the expression of insulin-like growth factor-I (IGF-I) and IGF-binding proteins (IGFBPs -II and -III) in response to a 10% inclusion of caramel plant wastewater (CPWW) in weaning pig diets; the objective was to assess associations between those growthrelated proteins to feed intake (Fl) and body weight gain (BWG). Sixteen purebred Landrace piglets were randomly distributed among eight pens (a gilt and boar per pen) and assigned to one of two treatments: 0% (control) and 10% inclusion of CPWW. During four consecutive weeks, live weight and Fl were recorded. Blood samples were drawn by jugular venipuncture during the first, second, and third weeks of the experiment and serum levels of IGF-I, IGFBP-II and IGFBP-III were determined. Feed intake, BWG and feed efficiency (FE) were not affected (P > 0.05) by the addition of 10% CPWW tothe diet, nor was animal health status visibly affected. Serum IGF-I levels were higher in control animals (P < 0.05) and increased from d 14 to d 28 of the experimental period (P < 0.05). Weekly increases were observed for IGFBP- III (P < 0.05) whereas IGFBP-II circulating levels decreased from d 14 to d 28 of the post-weaning test period. Simple correlation analysis revealed that there was a positive association between circulating levels of IGF-I and IGFBP-III (r = 0.88; P < 0.0001). However, the opposite was observed between these two and IGFBP-II (r = -0.84, P < 0.0001; r = -0.67, P < 0.0025, respectively). The changes observed in circulating levels of IGF-I, IGFBP-III and IGFBP-II were associated with weekly increases in Fl and BWG that occurred during the entire experimental period (P < 0.05). 

Author(s):  
Barbara H Mason ◽  
Michele A Tatnell ◽  
Ian M Holdaway

Measurement of insulin-like growth factor II (IGF-II) in human serum is complicated by the presence of IGF binding proteins and usually involves cumbersome extraction procedures followed by radioimmunoassay. We have utilized an extraction process developed for measuring insulin-like growth factor II in ovine serum using Sephacryl HR100, and have applied this to the extraction of human samples followed by radioimmunoassay for human IGF-II. The assay yielded 98% recovery of unlabelled IGF-II, parallelism between dilutions of eluate and the standard curve, complete removal of binding proteins and near-complete removal of IGF-I, and intra- and interassay coefficients of variation of 5% and 9%, respectively. The normal range for serum IGF-II in women was 490–1056 μg/L, and IGF-II levels were positively correlated with serum concentrations of insulin-like growth factor binding protein-3 (IGFBP-3) but not with IGF-I levels. Mean serum concentrations of IGF-II were reduced below normal in a number of hypopituitary patients and children with short stature and IGF-II concentrations in these subjects correlated positively with IGF-I and IGFBP-3. In acromegalic patients IGF-II levels were usually normal and were negatively correlated with IGF-I concentrations. From our experience with the above results the present assay appears particularly suitable for clinical measurements and research projects where high sample throughput is required.


1995 ◽  
Vol 308 (3) ◽  
pp. 865-871 ◽  
Author(s):  
S J Milner ◽  
G L Francis ◽  
J C Wallace ◽  
B A Magee ◽  
F J Ballard

The oxidative folding of human insulin-like growth factor (IGF)-I yields two major disulphide folding isomers. In the present study, B-domain analogues of IGF-I were used to investigate the effect of mutations on the folding reaction and to investigate the functional implications of misfolding. The analogues used were substitutions of the native Glu3 by Gly or Arg, or the native Glu9 by Lys. IGF-I and these analogues were also prepared attached to a hydrophobic 13-amino-acid N-terminal extension, Met-Phe-Pro-Ala-Met-Pro-Leu-Ser-Ser-Leu-Phe-Val-Asn, referred to as ‘Long-IGF-I’ analogues. Each IGF was fully reduced and refolded to yield native and misfolded isomers, which were subsequently purified for biological characterization. Analysis of the folding reaction at equilibrium revealed a distribution of folding isomers characteristic for each peptide. The yield of the native disulphide folding isomer was increased for the Glu3 substitutions, but not for the Glu9 substitution. The main alternative folding isomer was present in the IGF-I analogues in reduced proportions. Except for [Gly3]IGF-I the N-terminal extension increased the yield of the native isomer which was maximal for the analogue Long-[Arg3]IGF-I. A folding intermediate for the latter analogue was isolated and partially characterized. The biological assays showed that all the main alternative isomers bound poorly to IGF-binding proteins (IGFBPs) secreted by L6 myoblasts. Moreover, these isomers bound to the type 1 IGF receptor with 0.5-25% the affinity of the native isomer. In a rat L6 myoblast protein-synthesis assay, the observed biological activity of the native and main alternative isomers was explained by their modified IGFBP- and receptor-binding properties. We propose that the N-terminal extension imparts a steric constraint at a crucial point in folding, thus allowing native disulphide bonds to form efficiently.


1993 ◽  
Vol 293 (3) ◽  
pp. 713-719 ◽  
Author(s):  
G L Francis ◽  
S E Aplin ◽  
S J Milner ◽  
K A McNeil ◽  
F J Ballard ◽  
...  

Recombinant insulin-like growth factor-II (IGF-II) and two structural analogues, des(1-6)IGF-II and [Arg6]-IGF-II, were produced to investigate the role of N-terminal residues in binding to IGF-binding proteins (IGFBPs) and hence the biological properties of the modified peptides. The growth factors were modelled on two previously characterized variants of IGF-I, des(1-3)IGF-I and [Arg3]-IGF-I, which both show substantially decreased binding to IGFBPs and were expressed as fusion proteins in Escherichia coli. The biological activities of the corresponding analogues of IGF-I and IGF-II were compared in rat L6 myoblasts and H35B hepatoma cells. In the L6-myoblast protein-synthesis assay, the IGF-II analogues, des(1-6)IGF-II and [Arg6]-IGF-II, were slightly more potent than IGF-II but about 10-fold less potent than IGF-I and 100-fold less potent than the respective IGF-I analogues, des(1-3)IGF-I and [Arg3]IGF-I. In H35 hepatoma cells the anabolic response measured was the inhibition of protein breakdown, and the potency order was insulin >>> [Arg3]-IGF-I > des(1-3)IGF-I > [Arg6]-IGF-II > des(1-6)IGF-II > IGF-I > IGF-II. Binding of the IGFs and their analogues to the type 1 IGF receptor in L6 myoblasts and to the insulin receptor in H35 hepatoma cells did not fully explain the observed anabolic potency differences. Moreover, binding of all four analogues to the IGFBPs secreted by L6 myoblasts and H35B hepatoma cells was greatly decreased compared with the parent IGF. We conclude that the observed anabolic response to each IGF was determined by their relative binding to the competing cell receptor and IGFBP binding sites present.


1999 ◽  
Vol 146 (4) ◽  
pp. 881-892 ◽  
Author(s):  
David C. Martin ◽  
John L. Fowlkes ◽  
Bojana Babic ◽  
Rama Khokha

Insulin-like growth factor (IGF) II is overexpressed in many human cancers and is reactivated by, and crucial for viral oncogene (SV40 T antigen, [TAg])–induced tumorigenesis in several tumor models. Using a double transgenic murine hepatic tumor model, we demonstrate that tissue inhibitor of metalloproteinase 1 (TIMP-1) blocks liver hyperplasia during tumor development, despite TAg-mediated reactivation of IGF-II. Because the activity of IGFs is controlled by IGF-binding proteins (IGFBPs), we investigated whether TIMP-1 overexpression altered the IGFBP status in the transgenic liver. Ligand blotting showed that IGFBP-3 protein levels were increased in TIMP-1–overexpressing double transgenic littermates, whereas IGFBP-3 mRNA levels were not different, suggesting that TIMP-1 affects IGFBP-3 at a posttranscriptional level. IGFBP-3 proteolysis assays demonstrated that IGFBP-3 degradation was lower in TIMP-1–overexpressing livers, and zymography showed that matrix metalloproteinases (MMPs) were present in the liver homogenates and were capable of degrading IGFBP-3. As a consequence of reduced IGFBP-3 proteolysis and elevated IGFBP-3 protein levels, dissociable IGF-II levels were significantly lower in TIMP-1–overexpressing animals. This decrease in bioavailable IGF-II ultimately resulted in diminished IGF-I receptor signaling in vivo as evidenced by diminished receptor kinase activity and decreased tyrosine phosphorylation of the IGF-I receptor downstream effectors, insulin receptor substrate 1 (IRS-1), extracellular signal regulatory kinase (Erk)-1, and Erk-2. Together, these results provide evidence that TIMP-1 inhibits liver hyperplasia, an early event in TAg-mediated tumorigenesis, by reducing the activity of the tumor-inducing mitogen, IGF-II. These data implicate the control of MMP-mediated degradation of IGFBPs as a novel therapy for controlling IGF bioavailability in cancer.


1987 ◽  
Vol 112 (1) ◽  
pp. 123-132 ◽  
Author(s):  
A. Skottner ◽  
R. G. Clark ◽  
I. C. A. F. Robinson ◽  
L. Fryklund

ABSTRACT The in-vivo biological activity of recombinant methionyl insulin-like growth factor I (met-IGF-I) was demonstrated in hypophysectomized rats by following blood glucose after an i.v. bolus injection of met-IGF-I; a dose-dependent decrease in blood sugar was seen. Membrane transport was studied using the non-metabolizable amino acid α-aminoisobutyric acid; stimulation was obtained with the highest dose used (90 μg/rat). To test the original somatomedin hypothesis, growth studies were performed in hypophysectomized rats. Two or three doses of met-IGF-I were given with three different administration regimes (i.v. or s.c. infusion, or s.c. injections twice daily) for 6 or 8 days. Little growth-promoting activity was observed, with a significant effect on body weight gain obtained only when met-IGF-I was given continuously at the highest dose used (180 μg/day). No effect was seen on the in-vivo uptake of radioactive sulphate into cartilage. Epiphyseal cartilage width increased slightly at the highest dose of met-IGF-I, but only when the hormone was given by infusion. When 180 μg met-IGF-I/day were given by injections, a significant effect on longitudinal bone growth was obtained (90 μm above control). The levels of IGF in the serum were not measurably increased after s.c. administration of met-IGF-I, whereas after i.v. infusion, significantly raised levels were obtained at the higher dose rates (3·0 ± 0·3 and 2·8 ± 0·1 units/ml). Growth hormone was much more effective than met-IGF-I even at 50-fold lower doses. Priming the animals with 10 mu. bovine GH/day followed by combined infusions of GH and met-IGF-I did not reveal any potentiating effects of met-IGF-I in the presence of GH. We conclude that met-IGF-I is a relatively poor growth-promoting agent when given systemically, and that somatomedins are more likely to act as local growth factors rather than as circulating mediators of the growth-promoting effects of GH. J. Endocr. (1987) 112, 123–132


Sign in / Sign up

Export Citation Format

Share Document