scholarly journals SOIL MICROBIAL COMMUNITIES AS AFFECTED BY A COMMERCIAL ORGANIC FERTILIZER AND SUNN HEMP AS A COVER CROP IN ORGANIC SWEET PEPPER PRODUCTION IN PUERTO RICO

1969 ◽  
Vol 99 (1) ◽  
pp. 53-57
Author(s):  
Ana Negrete ◽  
Elide Valencia-Chin ◽  
Verónica Acosta-Martínez

SOIL MICROBIAL COMMUNITIES AS AFFECTED BY A COMMERCIAL ORGANIC FERTILIZER AND SUNN HEMP AS A COVER CROP IN ORGANIC SWEET PEPPER PRODUCTION IN PUERTO RICO

Microbiome ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Chengyuan Tao ◽  
Rong Li ◽  
Wu Xiong ◽  
Zongzhuan Shen ◽  
Shanshan Liu ◽  
...  

Abstract Background Plant diseases caused by fungal pathogen result in a substantial economic impact on the global food and fruit industry. Application of organic fertilizers supplemented with biocontrol microorganisms (i.e. bioorganic fertilizers) has been shown to improve resistance against plant pathogens at least in part due to impacts on the structure and function of the resident soil microbiome. However, it remains unclear whether such improvements are driven by the specific action of microbial inoculants, microbial populations naturally resident to the organic fertilizer or the physical-chemical properties of the compost substrate. The aim of this study was to seek the ecological mechanisms involved in the disease suppressive activity of bio-organic fertilizers. Results To disentangle the mechanism of bio-organic fertilizer action, we conducted an experiment tracking Fusarium wilt disease of banana and changes in soil microbial communities over three growth seasons in response to the following four treatments: bio-organic fertilizer (containing Bacillus amyloliquefaciens W19), organic fertilizer, sterilized organic fertilizer and sterilized organic fertilizer supplemented with B. amyloliquefaciens W19. We found that sterilized bioorganic fertilizer to which Bacillus was re-inoculated provided a similar degree of disease suppression as the non-sterilized bioorganic fertilizer across cropping seasons. We further observed that disease suppression in these treatments is linked to impacts on the resident soil microbial communities, specifically by leading to increases in specific Pseudomonas spp.. Observed correlations between Bacillus amendment and indigenous Pseudomonas spp. that might underlie pathogen suppression were further studied in laboratory and pot experiments. These studies revealed that specific bacterial taxa synergistically increase biofilm formation and likely acted as a plant-beneficial consortium against the pathogen. Conclusion Together we demonstrate that the action of bioorganic fertilizer is a product of the biocontrol inoculum within the organic amendment and its impact on the resident soil microbiome. This knowledge should help in the design of more efficient biofertilizers designed to promote soil function.


2021 ◽  
Author(s):  
Bintao Li ◽  
Luodi Guo ◽  
Haoming Wang ◽  
Yulong Li ◽  
Hangxian Lai ◽  
...  

Abstract Background Bio-organic fertilizers has been shown to improve crop yields, partially because of the effects on the structure and function in resident soil microbiome. Purpose and methods Whereas, it is unknown if such improvements have been facilitated by the particular action of microbial inoculants, or the compost substrate. To understand the ecological mechanisms to increase crop productivity by bio-organic fertilizers, we conducted a pot experiment tracking soil physicochemical factors and extracellular enzyme activity over two growth stages and variations of soil microbial communities caused by fertilization practices as below: Bacillus subtilis CY1 inoculation, swine compost, and bio-organic fertilizer. Results Results showed that different fertilization measures, especially bio-organic fertilizers, increased soil nutrients, enzyme activity, and the diversity of microbial communities. For quantifying the “effect size” of microbiota manipulation, we discoverd that, respectively, 19.94% and 48.99% of variation in the bacterial and fungal communities could be interpreted using tested fertilization practices. Fertilization-sensitive microbes showed taxonomy diversity and gave responses as guilds of taxa to specific treatments. The microbes exhibited medium to high degree of co-occurrence in the network and could be recruited, directly or indirectly, by B. subtilis CY1, suggesting that bio-organic fertilizer may allow manipulation of influential community members.Conclusion Together we demonstrated that the increase in tomato productivity by bio-organic fertilizer was caused by the synergistic effect of organic fertilizer and beneficial microorganisms, thus providing novel insights into the soil microbiome manipulation strategies of biologically-enhanced organic fertilizers.


2021 ◽  
Author(s):  
Micaela Tosi ◽  
John Drummelsmith ◽  
Dasiel Obregón ◽  
Inderjot Chahal ◽  
Laura L. Van Eerd ◽  
...  

Abstract Sustainable agricultural practices such as crop diversification, cover crops and residue retention are increasingly applied to counteract detrimental effects of agriculture on natural resources. Since part of their effects occur via changes soil microbial communities, it is critical to understand how these respond to different practices. Our study analyzed five cover crop (cc) treatments (oat, rye, radish, rye-radish mixture and no-cc control) and two crop residue management strategies (retention/R+ or removal/R-) in an 8-year diverse horticultural crop rotation trial from ON, Canada. Cc effects were small but stronger than those of residue management. Radish-based cover crops tended to be the most beneficial for both microbial abundance and richness, yet detrimental for fungal evenness. Cc species, in particular radish, also shaped fungal and, to a lesser extent, prokaryotic community composition. Crop residues modulated cc effects on bacterial abundance and fungal evenness (i.e., more sensitive in R- than R+), as well as microbial taxa. Several microbial structure features, some affected by cc, were correlated with early tomato growth in the following spring (e.g., composition, taxa within Actinobacteria, Firmicutes and Ascomycota). Our study suggests that, whereas mid-term cc effects were small, they need to be better understood as they could be influencing crop productivity via plant-soil feedbacks.


2020 ◽  
Author(s):  
Chengyuan Tao ◽  
Rong Li ◽  
Wu Xiong ◽  
Zongzhuan Shen ◽  
Shanshan Liu ◽  
...  

Abstract Background: Plant diseases caused by fungal pathogen result in a substantial economic impact on the global food and fruit industry. Application of organic fertilizers supplemented with biocontrol microorganisms (i.e. bioorganic fertilizers) has been shown to improve resistance against plant pathogens at least in part due to impacts on the structure and function of the resident soil microbiome. However, it remains unclear whether such improvements are driven by the specific action of microbial inoculants, microbial populations naturally resident to the organic fertilizer or the physical-chemical properties of the compost substrate. The aim of this study was to seek the ecological mechanisms involved in the disease suppressive activity of bio-organic fertilizers.Results: To disentangle the mechanism of bio-organic fertilizer action, we conducted an experiment tracking Fusarium wilt disease of banana and changes in soil microbial communities over three growth seasons in response to the following four treatments: bio-organic fertilizer (containing Bacillus amyloliquefaciens W19), organic fertilizer, sterilized organic fertilizer and sterilized organic fertilizer supplemented with B. amyloliquefaciens W19. We found that sterilized bioorganic fertilizer to which Bacillus was re-inoculated provided a similar degree of disease suppression as the non-sterilized bioorganic fertilizer. We further observed that disease suppression in these treatments could be linked to impacts on the resident soil microbial communities, with noted increases in specific Pseudomonas spp.. The link between Bacillus amendment and indigenous Pseudomonas spp. was further examined using pot experiments and biofilm assays. Conclusion: Together we demonstrate that the action of bioorganic fertilizer is a product of the biocontrol inoculum within the organic amendment and its impact on the resident soil microbiome. This knowledge should help in the design of more efficient biofertilizers designed to promote soil function.


Plant Disease ◽  
2010 ◽  
Vol 94 (12) ◽  
pp. 1491-1502 ◽  
Author(s):  
Robert P. Larkin ◽  
Timothy S. Griffin ◽  
C. Wayne Honeycutt

Seven different 2-year rotations, consisting of barley/clover, canola, green bean, millet/rapeseed, soybean, sweet corn, and potato, all followed by potato, were assessed over 10 years (1997–2006) in a long-term cropping system trial for their effects on the development of soilborne potato diseases, tuber yield, and soil microbial communities. These same rotations were also assessed with and without the addition of a fall cover crop of no-tilled winter rye (except for barley/clover, for which underseeded ryegrass was substituted for clover) over a 4-year period. Canola and rapeseed rotations consistently reduced the severity of Rhizoctonia canker, black scurf, and common scab (18 to 38% reduction), and canola rotations resulted in higher tuber yields than continuous potato or barley/clover (6.8 to 8.2% higher). Addition of the winter rye cover crop further reduced black scurf and common scab (average 12.5 and 7.2% reduction, respectively) across all rotations. The combined effect of a canola or rapeseed rotation and winter rye cover crop reduced disease severity by 35 to 41% for black scurf and 20 to 33% for common scab relative to continuous potato with no cover crop. Verticillium wilt became a prominent disease problem only after four full rotation cycles, with high disease levels in all plots; however, incidence was lowest in barley rotations. Barley/clover and rapeseed rotations resulted in the highest soil bacterial populations and microbial activity, and all rotations had distinct effects on soil microbial community characteristics. Addition of a cover crop also resulted in increases in bacterial populations and microbial activity and had significant effects on soil microbial characteristics, in addition to slightly improving tuber yield (4% increase). Thus, in addition to positive effects in reducing erosion and improving soil quality, effective crop rotations in conjunction with planting cover crops can provide improved control of soilborne diseases. However, this study also demonstrated limitations with 2-year rotations in general, because all rotations resulted in increasing levels of common scab and Verticillium wilt over time.


2017 ◽  
Vol 120 ◽  
pp. 273-280 ◽  
Author(s):  
Jeffrey S. Buyer ◽  
Virupax C. Baligar ◽  
Zhenli He ◽  
Enrique Arévalo-Gardini

2020 ◽  
Author(s):  
Chengyuan Tao ◽  
Rong Li ◽  
Wu Xiong ◽  
Zongzhuan Shen ◽  
Shanshan Liu ◽  
...  

Abstract Background: Plant diseases caused by fungal pathogen result in a substantial economic impact on the global food and fruit industry. Application of organic fertilizers supplemented with biocontrol microorganisms ( i.e. bioorganic fertilizers) has been shown to improve resistance against plant pathogens at least in part due to impacts on the structure and function of the resident soil microbiome. However, it remains unclear whether such improvements are driven by the specific action of microbial inoculants, microbial populations naturally resident to the organic fertilizer or the physical-chemical properties of the compost substrate. The aim of this study was to seek the ecological mechanisms involved in the disease suppressive activity of bio-organic fertilizers. Results: To disentangle the mechanism of bio-organic fertilizer action, we conducted an experiment tracking Fusarium wilt disease of banana and changes in soil microbial communities over three growth seasons in response to the following four treatments: bio-organic fertilizer (containing Bacillus amyloliquefaciens W19), organic fertilizer, sterilized organic fertilizer and sterilized organic fertilizer supplemented with B. amyloliquefaciens W19. We found that sterilized bioorganic fertilizer to which Bacillus was re-inoculated provided a similar degree of disease suppression as the non-sterilized bioorganic fertilizer across cropping seasons. We further observed that disease suppression in these treatments is linked to impacts on the resident soil microbial communities, specifically by leading to increases in specific Pseudomonas spp.. Observed correlations between Bacillus amendment and indigenous Pseudomonas spp. that might underlie pathogen suppression were further studied in laboratory and pot experiments. These studies revealed that specific bacterial taxa synergistically increase biofilm formation and likely acted as a plant-beneficial consortium against the pathogen. Conclusion: Together we demonstrate that the action of bioorganic fertilizer is a product of the biocontrol inoculum within the organic amendment and its impact on the resident soil microbiome. This knowledge should help in the design of more efficient biofertilizers designed to promote soil function.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ruoyu Li ◽  
Ziqin Pang ◽  
Yongmei Zhou ◽  
Nyumah Fallah ◽  
Chaohua Hu ◽  
...  

Organic fertilizers are critically important to soil fertility, microbial communities, and sustainable agricultural strategies. We compared the effect of two fertilizer groups (organic+chemical fertilizer: OM, chemical fertilizer: CK) on sugarcane growth, by observing the difference in microbial communities and functions, soil nutrient status, and agronomic characters of sugarcane. The results showed that the sugar content and yield of sugarcane increased significantly under organic fertilizer treatment. We believe that the increased soil nutrient status and soil microorganisms are the reasons for this phenomenon. In addition, redundancy analysis (RDA) shows that the soil nutrient condition has a major impact on the soil microbial community. In comparison with CK, the species richness of Acidobacteria, Proteobacteria, Chloroflexi, and Gemmatimonadetes as well as the functional abundance of nucleotide metabolism and energy metabolism increased significantly in the OM field. Moreover, compared with CK, genes related to the absorption and biosynthesis of sulfate were more prominent in OM. Therefore, consecutive organic fertilizer application could be an effective method in reference to sustainable production of sugarcane.


Sign in / Sign up

Export Citation Format

Share Document