scholarly journals Optimizing the in vitro colony-forming assay for more efficient delineation of the interaction between lung epithelial stem cells and their niche

2020 ◽  
Vol 16 (2) ◽  
pp. 50-62
2015 ◽  
Vol 15 (1) ◽  
pp. 109-121 ◽  
Author(s):  
Ahmed E. Hegab ◽  
Daisuke Arai ◽  
Jingtao Gao ◽  
Aoi Kuroda ◽  
Hiroyuki Yasuda ◽  
...  

2016 ◽  
Vol 60 (1) ◽  
Author(s):  
T. Kato ◽  
K. Oka ◽  
T. Nakamura ◽  
A. Ito

<p>Organ-specific stem cells play key roles in maintaining the epithelial cell layers of lung. Bronchioalveolar stem cells (BASCs) are distal lung epithelial stem cells of adult mice. Alveolar type 2 (AT2) cells have important functions and serve as progenitor cells of alveolar type 1 (AT1) cells to repair the epithelium when they are injured. Hepatocyte growth factor (HGF) elicits mitogenic, morphogenic, and anti-apoptotic effects on lung epithelial cells through tyrosine phosphorylation of Met receptor, and thus is recognized as a pulmotrophic factor. To understand which cells HGF targets in lung, we identified the cells expressing Met by immunofluorescence assay. Met was strongly expressed in BASCs, which expressed an AT2 cell marker, pro-SP-C, and a club cell marker, CCSP. In alveoli, we found higher expression of Met in primary AT2 than in AT1 cells, which was confirmed using primary AT2 cells. We further examined the mitogenic activity of HGF in AT2-cell-derived alveolar-like cysts (ALCs) in 3D culture. Multicellular ALCs expressed Met, and HGF enhanced the ALC production. Taking these findings together, BASCs could also be an important target for HGF, and HGF-Met signaling could function more potent on cells that have greater multipotency in adult lung.</p>


2009 ◽  
Vol 21 (1) ◽  
pp. 156 ◽  
Author(s):  
F. Cremonesi ◽  
V. Maggio ◽  
A. Lange Consiglio

There are indications that the culture system and the medium composition can affect embryo quality. In fact, various studies have been shown that the in vitro culture environment is one of the key determinants of the blastocyst output. In light of this, recently, some studies used co-culture with mouse embryonic fibroblasts in the effort to improve the development of bovine and ovine in vitro-derived embryos. Despite the progress in equine IVM and ICSI technologies and the different culture conditions reported for preimplantation development of ICSI fertilized horse oocytes, the yield of blastocysts remained low. In the present study we investigated the benefits of co-culturing bovine embryos with equine bone marrow mesenchymal stem cells (BM-MSC) or equine amniotic epithelial stem cells (AE-SC) on blastocyst development. This study employed the bovine embryo as a model and represents the initial step towards standardization of a protocol for the culture of equine embryos in our laboratory. BM specimens were obtained aseptically from sternal aspirates of horses under local anaesthesia and layered over Hystopaque™ 1.080, then centrifuged for 20 min at 400g and 4°C. Cell pellets were resuspended in 10 mL Dulbecco Modified Earle’s Medium supplemented with 10% fetal calf serum, 1% non-essential amino acids, penicillin (100 U mL–1) and streptomycin (100 μg mL–1) and seeded in 24-well plates. Amniotic membranes were obtained from fresh placentas and, to release the AE cells, amniotic fractions were incubated at 37°C with 0.05% trypsin for 45 min. Separated AE cells were plated on 25 cm2 flask in standard culture media containing 10 ng mL–1 epidermal growth factor. Seven hundred fifty cumulus–oocyte complexes with a homogeneous cytoplasm and two or more layers of cumulus cells were used. After IVM and IVF cumulus-free presumptive zygotes were randomly transferred into one of three co-culture systems in which they were cultured for up to Day 7: 1) co-culture with granulosa cells (control); 2) co-culture with BM-MSC; 3) co-culture with AE-SC. The culture medium was TCM 199 + 10% fetal bovine serum, pyruvate and gentamicin at 38.5°C in 5% CO2. Statistical analyses was performed by chi square test. Blastocysts developmental rates were similar among control, AE-SC and BM-MSC (35%, 41% and 30%, respectively), but the co-culture with AE-SC gave a significantly greater percentage of blastocysts compared to BM-MSC (P < 0.05). In conclusion, despite the absence of a significant increment in blastocysts attainment using stem cells as feeders for embryo culture, the AE-SC monolayer create a more suitable microenvironment necessary for inducing local cell activation and proliferation of the growing embryos in comparison with BM-MSC. It can be suggested that these cells secrete biologically active substances including signaling molecules and growth factors of epithelial nature different from those of the BM cells of mesenchymal origin. Regione Lombardia is acknowledged for the “Dote Ricercatori” fellowship to V.M.


2018 ◽  
Vol 6 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Maurycy Jankowski ◽  
Marta Dyszkiewicz-Konwińska ◽  
Joanna Budna ◽  
Sandra Knap ◽  
Artur Bryja ◽  
...  

AbstractIn modern medical research, stem cells are one of the main focuses, believed to be able to provide the solution to many currently unsolvable medical cases. However, their extraordinary potential for differentiation creates much obstacles in their potential application in clinical environment, without understanding the whole array of molecular mechanisms that drive the processes associated with their development and maturation. Because of that, there is a large need for studies that concern the most basic levels of those processes. Progenitor stem cells are a favorable target, as they are relatively lineage committed, making the amount of signaling required to reach the final form much lower. Their presence in the adult organism is also an advantage in their potential use, as they can be extracted without the need for storage from the moment of pre-natal development or birth. Epithelial tissues, because of their usual location or function, exhibit extraordinary level of plasticity and proliferative potential. That fact makes them one of the top candidates for use in applications such as tissue engineering, cell based therapies, regenerative and reconstructive medicine. The potential clinical application, however, need to be based on well developed methods, in order to provide an effective treatment without causing major side effects. To achieve that goal, a large amount of research, aiming to analyze the molecular basics of proliferation and differentiation of epithelial stem cells, and stem cells in general, needs to be conducted.


Placenta ◽  
2011 ◽  
Vol 32 ◽  
pp. S336
Author(s):  
F. Marongiu ◽  
R. Gramignoli ◽  
S. Doratiotto ◽  
M. Serra ◽  
M. Sini ◽  
...  

2017 ◽  
Author(s):  
Alyssa J. Miller ◽  
David R. Hill ◽  
Melinda S. Nagy ◽  
Yoshiro Aoki ◽  
Briana R. Dye ◽  
...  

SummaryThe bud tip epithelium of the branching mouse and human lung contains multipotent progenitors that are able to self-renew and give rise to all mature lung epithelial cell types. The current study aimed to understand the developmental signaling cues that regulate bud tip progenitor cells in the human fetal lung, which are present during branching morphogenesis, and to use this information to induce a bud tip progenitor-like population from human pluripotent stem cells (hPSCs) in vitro. We identified that FGF7, CHIR-99021 and RA maintained isolated human fetal lung epithelial bud tip progenitor cells in an undifferentiated state in vitro, and led to the induction of a 3-dimensional lung-like epithelium from hPSCs. 3-dimensional hPSC-derived lung tissue was initially patterned, with airway-like interior domains and bud tip-like progenitor domains at the periphery. Epithelial bud tip-like domains could be isolated, expanded and maintained as a nearly homogeneous population by serial passaging. Comparisons between human fetal lung epithelial bud tip cells and hPSC-derived bud tip-like cells were carried out using immunostaining, in situ hybridization and transcriptome-wide analysis, and revealed that in vitro derived tissue was highly similar to native lung. hPSC-derived epithelial bud tip-like structures survived in vitro for over 16 weeks, could be easily frozen and thawed and maintained multi-lineage potential. Furthermore, hPSC-derived epithelial bud tip progenitors successfully engrafted in the proximal airways of injured immunocompromised NSG mouse lungs, where they persisted for up to 6 weeks and gave rise to several lung epithelial lineages.


Gut ◽  
2018 ◽  
Vol 68 (6) ◽  
pp. 1003-1013 ◽  
Author(s):  
Terrence E Riehl ◽  
David Alvarado ◽  
Xueping Ee ◽  
Aaron Zuckerman ◽  
Lynn Foster ◽  
...  

ObjectiveLactobacillus rhamnosus GG (LGG), a probiotic, given by gavage is radioprotective of the mouse intestine. LGG-induced radioprotection is toll-like receptor 2 (TLR2) and cyclooxygenase-2 (COX-2)-dependent and is associated with the migration of COX-2+mesenchymal stem cells (MSCs) from the lamina propria of the villus to the lamina propria near the crypt epithelial stem cells. Our goals were to define the mechanism of LGG radioprotection including identification of the TLR2 agonist, and the mechanism of the MSC migration and to determine the safety and efficacy of this approach in models relevant to clinical radiation therapy.DesignIntestinal radioprotection was modelled in vitro with cell lines and enteroids as well as in vivo by assaying clinical outcomes and crypt survival. Fractionated abdominal and single dose radiation were used along with syngeneic CT26 colon tumour grafts to assess tumour radioprotection.ResultsLGG with a mutation in the processing of lipoteichoic acid (LTA), a TLR2 agonist, was not radioprotective, while LTA agonist and native LGG were. An agonist of CXCR4 blocked LGG-induced MSC migration and LGG-induced radioprotection. LGG given by gavage induced expression of CXCL12, a CXCR4 agonist, in pericryptal macrophages and depletion of macrophages by clodronate liposomes blocked LGG-induced MSC migration and radioprotection. LTA effectively protected the normal intestinal crypt, but not tumours in fractionated radiation regimens.ConclusionsLGG acts as a ‘time-release capsule’ releasing radioprotective LTA. LTA then primes the epithelial stem cell niche to protect epithelial stem cells by triggering a multicellular, adaptive immune signalling cascade involving macrophages and PGE2 secreting MSCs.Trial registration numberNCT01790035; Pre-results.


Sign in / Sign up

Export Citation Format

Share Document