scholarly journals FROM WARM CHILDHOOD TO COLD CLIMATES: THE YOUNG LIFE OF A CLIMATE CHANGE REFUGEE

2021 ◽  
Vol 7 (2) ◽  
pp. 190
Author(s):  
Daniel Briggs
2019 ◽  
Vol 5 (2) ◽  
pp. 83-85 ◽  
Author(s):  
Simon Stewart ◽  
Trine T Moholdt ◽  
Louise M Burrell ◽  
Karen Sliwa ◽  
Ana O Mocumbi ◽  
...  

Climate change is a major contributor to annual winter peaks in cardiovascular events across the globe. However, given the paradoxical observation that cardiovascular seasonality is observed in relatively mild as well as cold climates, global warming may not be as positive for the syndrome of heart failure (HF) as some predict. In this article, we present our Model of Seasonal Flexibility to explain the spectrum of individual responses to climatic conditions. We have identified distinctive phenotypes of resilience and vulnerability to explain why winter peaks in HF occur. Moreover, we identify how better identification of climatic vulnerability and the use of multifaceted interventions focusing on modifiable bio-behavioural factors may improve HF outcomes.


Author(s):  
Xuan Pang ◽  
Yundong Gu ◽  
Samuli Launiainen ◽  
Mingfu Guan

2019 ◽  
Vol 39 (3) ◽  
pp. 202-212 ◽  
Author(s):  
Jovana Alkalaj ◽  
Thora Hrafnsdottir ◽  
Finnur Ingimarsson ◽  
Robin J Smith ◽  
Agnes-Katharina Kreiling ◽  
...  

AbstractOstracods in Icelandic freshwaters have seldom been researched, with the most comprehensive record from the 1930s. There is a need to update our knowledge of the distribution of ostracods in Iceland as they are an important link in these ecosystems as well as good candidates for biomonitoring. We analysed 25,005 ostracods from 44 lakes, 14 springs, and 10 cave pools. A total of 16 taxa were found, of which seven are new to Iceland. Candona candida (Müller, 1776) is the most widespread species, whereas Cytherissa lacustris (Sars, 1863) and Cypria ophtalmica (Jurine, 1820) are the most abundant, showing great numbers in lakes. Potamocypris fulva (Brady, 1868) is the dominant species in springs. While the fauna of lakes and springs are relatively distinct from each other, cave pools host species that are common in both lakes and springs. Icelandic non-marine ostracods include mostly generalist species, as well as species adapted to cold climates and resemble those of other north European countries while sharing very few species with the North American Arctic. Iceland is experiencing impacts from climate change and a booming tourism. It is possible to use selected freshwater ostracods as biomonitoring tools by constructing a detailed database of these species.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

2019 ◽  
Author(s):  
Randall S. Abate
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document