scholarly journals Geochemical Characterization and Presence of Rare Earth Elements in the Recent Depositions at the Islands of the Eastern Bay of Bengal, Bangladesh

2020 ◽  
Vol 11 (1) ◽  
pp. 40-47
Author(s):  
Farah Deeba ◽  
Syed Hafizur Rahman ◽  
Mohammad Zafrul Kabir ◽  
Mohammad Rajib

This study presents geochemical characterization, as well as, quantification of rare earth elements in the recent beach deposition at the two major islands of the eastern Bay of Bengal-Kutubdia and Moheshkhali. Placer sand samples from near surface depositions were analyzed by heavy mineral separation, mineralogical identification, chemical composition and elemental mapping. X-ray diffraction (XRD), X-ray fluorescence (XRF), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) were used to obtain these results. The heavy mineral concentration in different raw sand samples resulted by heavy liquid separation technique revealed that the average abundance of heavy minerals is 69.67% in Kutubdia island and 9.32% in Moheshkhali island, respectively. The X-ray patterns of Kutubdia and Moheshkhali sand samples show the presence of zircon, quartz, hematite, magnetite, ilmenite, chromite, kyanite, anatase, rutile and garnet. Chemical composition of heavy mineral sands from Kutubdia and Moheshkhali islands were analyzed using X-ray fluorescence method (XRF) for major oxides and trace elements. The concentration is of Na2O, MgO, Al2O3, SiO2, P, K2O, CaO, TiO2, V2O5, Cr2O3, MnO, Fe2O3, CoO, ZnO, SrO, Y2O3 ZrO2, Nb2O5, MoO3, HfO2, WO3, ThO2, U3O8, CeO2, Nd2O and Er2O3 were determined. A significant amount of various rare earth elements (REEs) in the elemental composition of few samples was also identified. The study is expected to be useful in the baseline and environmental aspects of both the islands.

Author(s):  
Farah Deeba ◽  
Syed Hafizur Rahman ◽  
Mohammad Zafrul Kabir ◽  
Mohammad Rajib

This study presents geochemical characterization, as well as, quantification of rare earth elements in the recent beach deposition at the two major islands of the eastern Bay of Bengal-Kutubdia and Moheshkhali. Placer sand samples from near surface depositions were analyzed by heavy mineral separation, mineralogical identification, chemical composition and elemental mapping. X-ray diffraction (XRD), X-ray fluorescence (XRF), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) were used to obtain these results. The heavy mineral concentration in different raw sand samples resulted by heavy liquid separation technique revealed that the average abundance of heavy minerals is 69.67% in Kutubdia island and 9.32% in Moheshkhali island, respectively. The X-ray patterns of Kutubdia and Moheshkhali sand samples show the presence of zircon, quartz, hematite, magnetite, ilmenite, chromite, kyanite, anatase, rutile and garnet. Chemical composition of heavy mineral sands from Kutubdia and Moheshkhali islands were analyzed using X-ray fluorescence method (XRF) for major oxides and trace elements. The concentration is of Na2O, MgO, Al2O3, SiO2, P, K2O, CaO, TiO2, V2O5, Cr2O3, MnO, Fe2O3, CoO, ZnO, SrO, Y2O3 ZrO2, Nb2O5, MoO3, HfO2, WO3, ThO2, U3O8, CeO2, Nd2O and Er2O3 were determined. A significant amount of various rare earth elements (REEs) in the elemental composition of few samples was also identified. The study is expected to be useful in the baseline and environmental aspects of both the islands.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 982
Author(s):  
Taras L. Panikorovskii ◽  
Julia A. Mikhailova ◽  
Yakov A. Pakhomovsky ◽  
Ayya V. Bazai ◽  
Sergey M. Aksenov ◽  
...  

The Lovozero peralkaline massif (Kola Peninsula, Russia) has several deposits of Zr, Nb, Ta and rare earth elements (REE) associated with eudialyte-group minerals (EGM). Eudialyte from the Alluaiv Mt. often forms zonal grains with central parts enriched in Zr (more than 3 apfu) and marginal zones enriched in REEs. The detailed study of the chemical composition (294 microprobe analyses) of EGMs from the drill cores of the Mt. Alluaiv-Mt. Kedykvyrpakhk deposits reveal more than 70% Zr-enriched samples. Single-crystal X-ray diffraction (XRD) was performed separately for the Zr-rich (4.17 Zr apfu) core and the REE-rich (0.54 REE apfu) marginal zone. It was found that extra Zr incorporates into the octahedral M1A site, where it replaces Ca, leading to the symmetry lowering from R3¯m to R32. We demonstrated that the incorporation of extra Zr into EGMs makes the calculation of the eudialyte formula on the basis of Si + Al + Zr + Ti + Hf + Nb + Ta + W = 29 apfu inappropriate.


2012 ◽  
Vol 12 (2) ◽  
pp. 129-134 ◽  
Author(s):  
M. Opiela ◽  
A. Grajcar

Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo-mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%), phosphorus (from 0.006 to 0.008%) and oxygen (6 ppm). The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17 μm2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non-metallic inclusions during hot-working.


1958 ◽  
Vol 112 (4) ◽  
pp. 1183-1186 ◽  
Author(s):  
E. L. Chupp ◽  
J. W. M. Du Mond ◽  
F. J. Gordon ◽  
R. C. Jopson ◽  
Hans Mark
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1253
Author(s):  
Uwe König ◽  
Sabine M. C. Verryn

Heavy mineral sands are the source of various commodities such as white titanium dioxide pigment and titanium metal. The three case studies in this paper show the value of X-ray diffraction (XRD) and statistical methods such as data clustering for process optimization and quality control during heavy mineral processing. The potential of XRD as an automatable, reliable tool, useful in the characterization of heavy mineral concentrates, product streams and titania slag is demonstrated. The recent development of ultra-high-speed X-ray detectors and automated quantification allows for ‘on the fly’ quantitative X-ray diffraction analysis and truly interactive process control, especially in the sector of heavy mineral concentration and processing. Apart from the information about the composition of a raw ore, heavy mineral concentrate and the various product streams or titania slag, this paper provides useful information by the quantitative determination of the crystalline phases and the amorphous content. The analysis of the phases can help to optimize the concentration of ores and reduction of ilmenite concentrate. Traditionally, quality control of heavy mineral concentrates and titania slag relies mainly on elemental, chemical, gravimetrical, and magnetic analysis. Since the efficiency of concentration of minerals in the different product streams and reduction depends on the content of the different minerals, and for the latter on the titanium and iron phases such as ilmenite FeTiO3, rutile TiO2, anatase TiO2, or the various titanium oxides with different oxidation stages, fast and direct analysis of the phases is required.


1988 ◽  
Vol 133 ◽  
Author(s):  
C. T. Liu ◽  
J. A. Horton ◽  
D. G. Petitifor

ABSTRACTRare-earth elements including Y, Er and Sc were added to AlTi3 for stabilizing the Ll2 ordered crystal structure, as predicted by the AB3 structure map. The crystal structure and phase composition in the AlTi3 alloys were studied by electron microprobe analysis, X-ray diffraction and TEM. The solubility limit of the rare-earth elements were determined and correlated with the atomic size factor. The results obtained so far indicate that rare-earth additions are unable to change the crystal structure of AlTi3 from DO19 to Ll2. The inability to stabilize the Ll2 structure demonstrates the need to characterize the structure map domains with a further period-dependent parameter.


Sign in / Sign up

Export Citation Format

Share Document