scholarly journals Accurate Measurement Of Chromium Isotopic Compositions In Geological Reference Materials By Double-Spike MC‐ICP‐MS

2021 ◽  
Vol 42 (3) ◽  
Author(s):  
Kai Shi ◽  
Jian-Ming Zhu
2020 ◽  
Vol 44 (3) ◽  
pp. 553-565 ◽  
Author(s):  
Ming Yang ◽  
Yue‐Heng Yang ◽  
Noreen J. Evans ◽  
Lie‐Wen Xie ◽  
Chao Huang ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Guanhong Zhu ◽  
Jinlong Ma ◽  
Gangjian Wei ◽  
Le Zhang

A simple method has been developed to purify lithium (Li) from matrix elements in geological reference materials, using a single-column packed with AGMP-50 cation exchange resin, followed by high-precision Li isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). A series of tests, such as different types of resin, loading amount of Li, loading volumes, and various eluents, were conducted to ascertain the optimal conditions for Li purification and the effects of intensity, acidity, and presence of potential matrix elements on Li isotope measurements were also evaluated. In our experiment, Al and high-field-strength elements (HFSEs), such as Ti, Zr, and Hf, were eluted by 0.2 M HCl + 0.3 M HF, and 0.73 M HCl was used to separate Li from other matrix elements, such as Na. This method is suitable for processing large amount of Li (60–270 ng) and enabling a Li recovery of close to 100%, with effective removal of matrix elements such as Na and Ca. Besides, our method achieves low matrix interferences (e.g., Na/Li << 1 and Ca/Li << 1 for rock and seawater via a single-column procedure; Ca/Li < 2 for carbonate via a two-column procedure) and also uses small volume of eluents and is rapid (~5 h), enabling a total separation to be completed in ~0.5 d. Using this method, we report Li isotopic compositions of various geological reference materials, including igneous rocks, seawater, and carbonate. The Li isotopic compositions are consistent with the data published previously for the analyzed reference materials. As such, the reported method is ideally suited for Li separation from multiple types of geological samples prior to isotopic analysis.


2019 ◽  
Vol 44 (1) ◽  
pp. 183-199
Author(s):  
Ya‐Jun An ◽  
Xin Li ◽  
Zhao‐Feng Zhang

2019 ◽  
Vol 85 (6) ◽  
pp. 11-24
Author(s):  
I. V. Nikolaeva ◽  
A. A. Kravchenko ◽  
S. V. Palessky ◽  
S. V. Nechepurenko ◽  
D. V. Semenova

Two methods — ICP-MS and ICP-AES are used for certification of the new reference material — needles of Siberian pine (NSP-1). Techniques of the analysis include decomposition of plant samples in two different ways: acid digestion in a microwave system MARS-5 and lithium metaborate fusion followed by ICP-MS and ICP-AES analysis of the solutions. Simultaneous determinations of all the elements were carried out in low, medium and high resolution using SF-mass-spectrometer ELEMENT and atomic-emission spectrometer IRIS Advantage with external calibrations and internal standards (In — ICP-MS, Sc —ICP-AES). Middle and high resolutions of ICP mass spectrometer were used for interference corrections. Data obtained by ICP-MS and ICP-AES with different decomposition techniques are in good agreement. The ICP-MS and ICP-AES techniques have been validated by the analysis of three plant reference materials: LB-1 (leaf of a birch), Tr-1 (grass mixture) and EK-1 (Canadian pondweed). These techniques were used for the determination of 38 elements in the new reference material NSP-1. Relative standard deviations for most of the determined elements were below 10%. Combination of ICP-MS and ICP-AES techniques for certification of the new reference material makes it possible to expand the set of elements to be determined and to reduce the total analysis time.


Author(s):  
Lei Xu ◽  
Wen Zhang ◽  
Tao Luo ◽  
Jin-Hui Yang ◽  
Zhaochu Hu

High precise and accurate measurements of Fe isotope ratios for fourteen reference materials from the USGS, MPI-DING and CGSG were successfully carried out using a developed analytical technique by fs...


Author(s):  
Zhian Bao ◽  
Kaiyun Chen ◽  
Chunlei Zong ◽  
Honglin Yuan

Sulfur isotope is an important geochemical tracer in diverse fields of geosciences. Controlling the accuracy and precision of microanalysis of sulfur isotope requires well-characterized reference materials with matrices similar to...


Author(s):  
Sameer Amereih ◽  
Thomas Meisel ◽  
Wolfhard Wegsheider

Two independent digestion techniques (microwave acid digestion with HF and HCl, HNO3 and Na2O2 sintering, respectively) were applied to determine the total Sb concentration in a real soil sample and in reference materials: Icelandic Basalt (BIR-1), Cody Shale (SCo-1) and (Soil-7). ICP-MS was used to determine total antimony concentrations in the digested and the extracted solutions using external calibration and isotope dilution technique. The recoveries of Sb using HF in the acids digestion mixture in closed-vessels microwave digestion system were excellent and the concentrations are in very good agreement with certified or reported concentrations of reference materials. Using closed-vessels combined with microwave heating systems probably prevents the loss of volatile Sb compounds. The use of hydrogen fluoride with other strong acid can help dissociating insoluble antimony silicates. Different extraction reagents were tested for their ability to extract antimony using an ultrasonic bath namely: EDTA disodium salt, potassium hydroxide, citric acid monohydrate, pyridine-2,6-dicarboxylic acid, ammonium acetate, ammonium oxalate, ammonium thiocyanate, ammonium persulphate and di-ammonium hydrogen citrate. A 500 mmol L-1 solution of citric acid pH 1.08 proved to be the most efficient extractant. Optimization of the extraction conditions were investigated by studying the effect of pH, concentration, temperature, time of extraction, the ratio of sample mass to the volume of extractant and the number of consecutive extractions. As a result three consecutive extractions for a total time of 45 min at 80 ˚C was the most efficient condition for Sb extraction. Using these extraction conditions 61%, 3.7% RSD and 42%, 2.2% RSD (n=6) of the total antimony in the real soil and Soil-7 samples, respectively could be extracted.


Sign in / Sign up

Export Citation Format

Share Document