scholarly journals Variable Structure Controller for Surface Ship Steering

2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Ringo Rimbe ◽  
Raidandi Danwe ◽  
Babagana M Mustapha

A Lyapunov approach to constructing switching surfaces for variable structure systems is investigated in this paper. The method guarantees sliding mode for any initial condition of the state vector and asymptotic stability is always achieved during sliding motion. An application for  the design of  a variable structure ship steering controller is carried out and  simulation results are presented. The designed controller exhibits robustness as applied to a linear time-invariant ship model and a time varying non-linear  ship model operating in  an uncertain and  time-varying environment.

2012 ◽  
Vol 433-440 ◽  
pp. 3734-3740
Author(s):  
Bo Meng ◽  
Cun Chen Gao ◽  
Shu Hong Tang

This paper discusses the control problems of singular linear time-invariant delay systems with uncertainties. A new adaptive variable structure control strategy is given by Lyapunov stability theory. The invariance of sliding mode is proved in the circumstances of the external disturbance and parameter perturbation with matching conditions. Through memory and memoryless of the linear state feedback, the control strategy ensure that system reaches sliding mode in finite time and the closed-loop system is global asymptotic stable. Simulation results further show that the strategy is feasible and effective.


Author(s):  
Heejin Lee ◽  

In this paper, a new scheme is presented for the accurate tracking control of the second-order variable structure systems using the variable boundary layer. Up to now, variable structure controller(VSC) applying the variable boundary layer did not remove chattering from an arbitrary initial state of the system trajectory because VSC has used the fixed sliding surface. But, by using the linear time-varying sliding surfaces, the scheme has the robustness against chattering from all states. The suggested method can be applied to the second-order nonlinear systems with parameter uncertainty and extraneous disturbances, and have better tracking performance than the conventional method.To demonstrate the advantages of the proposed algorithm, it is applied to a two-link manipulator.


Author(s):  
Robert Peruzzi

Forensic analysis in this case involves the design of a communication system intended for use in Quick Service Restaurant (QSR) drive-thru lanes. This paper provides an overview of QSR communication system components and operation and introduces communication systems and channels. This paper provides an overview of non-linear, time-varying system design as contrasted with linear, time-invariant systems and discusses best design practices. It also provides the details of how audio quality was defined and compared for two potentially competing systems. Conclusions include that one of the systems was clearly inferior to the other — mainly due to not following design techniques that were available at the time of the project.


2000 ◽  
Vol 122 (4) ◽  
pp. 632-640 ◽  
Author(s):  
M. Onder Efe ◽  
Okyay Kaynak ◽  
Xinghuo Yu

Noise rejection, handling the difficulties coming from the mathematical representation of the system under investigation and alleviation of structural or unstructural uncertainties constitute prime challenges that are frequently encountered in the practice of systems and control engineering. Designing a controller has primarily the aim of achieving the tracking precision as well as a degree of robustness against the difficulties stated. From this point of view, variable structure systems theory offer well formulated solutions to such ill-posed problems containing uncertainty and imprecision. In this paper, a simple controller structure is discussed. The architecture is known as Adaptive Linear Element (ADALINE) in the framework of neural computing. The parameters of the controller evolve dynamically in time such that a sliding motion is obtained. The inner sliding motion concerns the establishment of a sliding mode in controller parameters, which aims to minimize the error on the controller outputs. The outer sliding motion is designed for the plant. The algorithm discussed drives the error on the output of the controller toward zero learning error level, and the state tracking error vector of the plant is driven toward the origin of the phase space simultaneously. The paper gives the analysis of the equivalence between the two sliding motions and demonstrates the performance of the algorithm on a three degrees of freedom, anthropoid robotic manipulator. In order to clarify the performance of the scheme, together with the dynamic complexity of the plant, the adverse effects of observation noise and nonzero initial conditions are studied. [S0022-0434(00)01704-4]


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 282 ◽  
Author(s):  
Cong-Trang Nguyen ◽  
Thanh Long Duong ◽  
Minh Quan Duong ◽  
Duc Tung Le

Variable structure control with sliding mode can provide good control performance and excellent robustness. Unfortunately, the chattering phenomenon investigated due to discontinuous switching gain restricting their applications. In this paper, a chattering free improved variable structure control (IVSC) for a class of mismatched uncertain interconnected systems with an unknown time-varying delay is proposed. A sliding function is first established to eliminate the reaching phase in traditional variable structure control (TVSC). Next, a new reduced-order sliding mode estimator (ROSME) without time-varying delay is constructed to estimate all unmeasurable state variables of plants. Then, based on the Moore-Penrose inverse approach, a decentralized single-phase robustness sliding mode controller (DSPRSMC) is synthesized, which is independent of time delays. A DSPRSMC solves a complex interconnection problem with an unknown time-varying delay term and drives the system’s trajectories onto a switching surface from the initial time instance. Particularly, by applying the well-known Barbalat’s lemma, the chattering phenomenon in control input is alleviated. Moreover, a sufficient condition is established by using an appropriate Lyapunov theory and linear matrix inequality (LMI) method such that a sliding mode dynamics is asymptotically stable from the beginning time. Finally, a developed method is validated by numerical example with computer simulations.


1984 ◽  
Vol 106 (2) ◽  
pp. 137-143 ◽  
Author(s):  
W. H. Lee ◽  
J. M. Mansour

The applicability of a linear systems analysis of two-dimensional swing leg motion was investigated. Two different linear systems were developed. A linear time-varying system was developed by linearizing the nonlinear equations describing swing leg motion about a set of nominal system and control trajectories. Linear time invariant systems were developed by linearizing about three different fixed limb positions. Simulations of swing leg motion were performed with each of these linear systems. These simulations were compared to previously performed nonlinear simulations of two-dimensional swing leg motion and the actual subject motion. Additionally, a linear system analysis was used to gain some insight into the interdependency of the state variables and controls. It was shown that the linear time varying approximation yielded an accurate representation of limb motion for the thigh and shank but with diminished accuracy for the foot. In contrast, all the linear time invariant systems, if used to simulate more than a quarter of the swing phase, yielded generally inaccurate results for thigh shank and foot motion.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 915
Author(s):  
Robert Vrabel

Based on the eigenvalue idea and the time-varying weighted vector norm in the state space R n we construct here the lower and upper bounds of the solutions of uniformly asymptotically stable linear systems. We generalize the known results for the linear time-invariant systems to the linear time-varying ones.


Sign in / Sign up

Export Citation Format

Share Document