scholarly journals Environmental Impact of Lumber Production using Life Cycle Assessment: A Case Study of the Production System in South-west Nigeria

2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Femi K Owofadeju ◽  
Omeiza A Agbaje ◽  
Temitayo A Ewemoje

Life Cycle Assessment (LCA) is a decision support tool that can be used to evaluate the potential environmental impact of a product system. Environmental impact associated with the production of (0.0508×0.1524×3.6576) m lumber referred to as “2by6” in the primary wood industry was evaluated. This assessment is a cradle to gate system with boundaries spanning from the point of raw material extraction in Osun state, to transportation of the lumber product to wood market in Ibadan, Oyo state. The study compared four production scenarios by varying haulage distance and energy source during production at two sawmill facilities located in Ife and Ikire in Osun state. Data obtained from the production system were analysed using GaBi6 software to estimate and classify the emissions into five impact categories. Life Cycle Impact Assessment result (LCIA) showed that Acidification Potential (AP), Global Warming Potential (GWP) and Smog Potential (SP) were the most significant impact indicators observed in the four production scenarios. AP (2.883, 3.352, 3.483, 3.951) kg H+ mole-Equiv, GWP (13.25, 14.44, 15.45, 16.65) kg CO2-Equiv and SP (1.86, 2.15, 2.24, 2.53) kg O3-Equiv. Scenario 4 which involved a longer transportation distance and employed a diesel generator for the milling process showed the least environmental performance. Processes that contributed significant impact were wood waste disposal method employed and the secondary transportation processes during logging activities. In order to achieve a better production system, practices that encourage less waste generation and the use of renewable energy were recommended.Keywords— LCA, lumber production, environmental impact, wood waste

2020 ◽  
Author(s):  
Yi Ji ◽  
Bob McCullouch ◽  
Zhi Zhou

Snow and ice removal are important tasks during the winter season and large amounts of anti-icing and de-icing chemicals are used and there is a critical need to review and synthesize information from the literature to compare and contrast anti-icing and de-icing chemicals to understand their environmental impact and support decision making. The effectiveness, costs, and environmental impact of commonly used and alternative anti-icing and de-icing chemicals were reviewed in this study. Application of anti-icing and de-icing chemicals may increase ion concentrations in soils and change nitrogen cycle, soil pH, and trace metal concentrations, affect surface water and groundwater, and increase public health risks. Life cycle assessment was conducted to quantitively evaluate environmental impact of selected anti-icing and de-icing chemicals. A decision support tool on environmental impact was developed to evaluate environmental impact of anti-icing and de-icing chemicals in ten different environmental impact categories. The results showed the environmental life cycle assessment tool developed in this study can be used to compare multiple environment impacts to support decision making for winter operation chemicals.


2018 ◽  
Vol 174 ◽  
pp. 01006 ◽  
Author(s):  
Břetislav Teplý ◽  
Tomáš Vymazal ◽  
Pavla Rovnaníková

Efficient sustainability management requires the use of tools which allow material, technological and construction variants to be quantified, measured or compared. These tools can be used as a powerful marketing aid and as support for the transition to “circular economy”. Life Cycle Assessment (LCA) procedures are also used, aside from other approaches. LCA is a method that evaluates the life cycle of a structure from the point of view of its impact on the environment. Consideration is given also to energy and raw material costs, as well as to environmental impact throughout the life cycle - e.g. due to emissions. The paper focuses on the quantification of sustainability connected with the use of various types of concrete with regard to their resistance to degradation. Sustainability coefficients are determined using information regarding service life and "eco-costs". The aim is to propose a suitable methodology which can simplify decision-making in the design and choice of concrete mixes from a wider perspective, i.e. not only with regard to load-bearing capacity or durability.


2016 ◽  
Vol 88 ◽  
pp. 538-549 ◽  
Author(s):  
Linda L. Fang ◽  
Borja Valverde-Pérez ◽  
Anders Damgaard ◽  
Benedek Gy. Plósz ◽  
Martin Rygaard

2017 ◽  
Vol 93 ◽  
pp. 229-238 ◽  
Author(s):  
Muratcan Başkurt ◽  
Ilgın Kocababuç ◽  
Esra Binici ◽  
Ebru Dulekgurgen ◽  
Özlem Karahan Özgün ◽  
...  

2011 ◽  
Vol 63 (3) ◽  
pp. 565-572 ◽  
Author(s):  
B. Godskesen ◽  
K. C. Zambrano ◽  
A. Trautner ◽  
N. -B. Johansen ◽  
L. Thiesson ◽  
...  

Environmental life-cycle assessment (LCA) was applied to evaluate three different water systems of the water sector in Copenhagen, Denmark, including technologies within water supply, facilities recycling water and treatment of sewer overflow. In these three water systems LCA was used to evaluate the environmental impacts of each of the processes involved. The overall conclusion was that LCA is suitable as a decision support tool in the water sector as it provides a holistic evaluation platform of the considered alternatives categorised in environmental impact categories. The use of LCA in the water sector of this region has limitations since it does not yet consider impact categories assessing freshwater scarcity and ecological sustainability.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 185
Author(s):  
Gerrit Ralf Surup ◽  
Anna Trubetskaya ◽  
Merete Tangstad

This study examined the literature on life cycle assessment on the ferromanganese alloy production route. The environmental impacts of raw material acquisition through the production of carbon reductants to the production of ferromanganese alloys were examined and compared. The transition from the current fossil fuel-based production to a more sustainable production route was reviewed. Besides the environmental impact, policy and socioeconomic impacts were considered due to evaluation course of differences in the production routes. Charcoal has the potential to substantially replace fossil fuel reductants in the upcoming decades. The environmental impact from current ferromanganese alloy production can be reduced by ≥20% by the charcoal produced in slow pyrolysis kilns, which can be further reduced by ≥50% for a sustainable production in high-efficient retorts. Certificated biomass can ensure a sustainable growth to avoid deforestation and acidification of the environment. Although greenhouse gas emissions from transport are low for the ferromanganese alloy production, they may increase due to the low bulk density of charcoal and the decentralized production of biomass. However, centralized charcoal retorts can provide additional by-products or biofuel and ensure better product quality for the industrial application. Further upgrading of charcoal can finally result in a CO2 neutral ferromanganese alloy production for the renewable power supply.


2016 ◽  
Vol 18 (24) ◽  
pp. 6468-6481 ◽  
Author(s):  
P. Limleamthong ◽  
M. Gonzalez-Miquel ◽  
S. Papadokonstantakis ◽  
A. I. Papadopoulos ◽  
P. Seferlis ◽  
...  

We propose a decision-support tool to assess the sustainability level of chemical products and processes.


Revista EIA ◽  
2019 ◽  
Vol 16 (31) ◽  
pp. 27-42 ◽  
Author(s):  
Carmen Alicia Parrado Moreno ◽  
Ricardo Esteba Ricardo Hernández ◽  
Héctor Iván Velásquez Arredondo ◽  
Sergio Hernando Lopera Castro ◽  
Christian Hasenstab --

Colombia is a major flower exporter of a wide variety of species, among which the chrysanthemum plays a major role due to its exporting volume and profitability on the international market. This study examines the major environmental impacts of the chrysanthemum supply chain through a life cycle assessment (LCA). One kg of stems export quality was used as the functional unit (FU). The study examines cut-flowers systems from raw material extraction to final product commercialization for two markets (London and Miami) and analyzes two agroecosystems: one certified system and one uncertified system. The transport phase to London resulted in more significant environmental impacts than the transport phase to Miami, and climate change (GWP100) category was significant in both cities, generating values of 9.10E+00 and 2.51E+00 kg CO2-eq*FU for London and Miami, respectively. Furthermore, when exclusively considering pre-export phases, the uncertified system was found to have a greater impact than the certified system with respect to fertilizer use (certified 1,448E-02 kg*FU, uncertified 2.23E-01 kg*FU) and pesticide use (certified 1.24 E-04 kg*FU, uncertified 2.24E-03 kg*FU). With respect to the crop management, eutrophication (EP) and acidification (AP) processes imposed the greatest level of environmental impact. Strategies that would significantly reduce the environmental impact of this supply chain are considered, including the use of shipping and a 50% reduction in fertilizer use.


Author(s):  
S. Boughrara ◽  
M. Chedri ◽  
K. Louhab

The aim of this study is the use of Life Cycle Assessment, to evaluate the impact generated by cement manufactory situated in Sour EL Ghozlane town in Algeria country, which use the dry process to produce cement Portland. The LCA method is used for compiling and examining the inputs and outputs of energy, raw material and environmental impacts directly attributable to the manufacture and functioning of a product throughout its life. It is also used to determine element and energy contributing to each impact evaluated. Potentials impacts are evaluated using the SimaProV.7.1 software and IMPACT2000+ method in this study.


Sign in / Sign up

Export Citation Format

Share Document