scholarly journals RESEARCH ON COPPER-67 SEPARATION OBTAINED BY PHOTO-NUCLEAR FROM ZINC OF NATURAL COMPOSITION

2020 ◽  
pp. 177-179
Author(s):  
O.I. Azarov ◽  
V.O. Bocharov ◽  
O.F. Stoyanov

In the world, it is planned to produce promising for the manufacture of radiopharmaceuticals of radioisotope copper-67 by the reaction of its production from zinc-68 under the influence of γ-radiation on an electron accelerator. The next major issue is the separation of copper and zinc. Extraction, ion exchange and thermal distillation of zinc have already been studied in detail. Co-precipitation of copper with low zinc and thermal distillation of organic compounds of metals is promising.

2012 ◽  
Vol 610-613 ◽  
pp. 2350-2355 ◽  
Author(s):  
Ji Dan Liu ◽  
Zu Xin Xu ◽  
Wei Gang Wang ◽  
Wei Jin

Recovering nitrogen and phosphorus through struvite crystallization from swine wastewater has gained increasing interest. However, effluents of anaerobic digested swine wastewater contains other constituents including complex and hardly definited organic compounds, which may hinder the formation of struvite crystal and affect the purity of the precipitates by forming other insoluble minerals. Struvite precipitation was carried out at laboratory scale by adding magnesium chloride and potassium hydrogen as external sources of magnesium and phosphorus to equal Mg: N: P molar ratio, respectively, and regulating the pH at 9.5 in the absence and presence of organic compounds. Exceeded 70% phosphate and ammonium reduction were obtained. The recovered products were detected and analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and chemical methods, which were proved to be struvite crystals. The soluble organic compounds had less than 6% changes in amount during struvite precipitation and it was proved that the removal of TCOD during the precipitation of struvite may be attributed to the co-precipitation of struvite. The results indicate that struvite precipitation could be a viable method of ammonium removal in the presence of organic compounds from anaerobically digested swine manure.


2002 ◽  
Vol 66 (9) ◽  
pp. 1499-1509 ◽  
Author(s):  
Chloé Maréchal ◽  
Francis Albarède

2019 ◽  
Vol 25 (10) ◽  
pp. 33-49
Author(s):  
Najwa Sabir Majeed ◽  
Samira Najem Abdullah

The efficient removal of dissolved organic compounds (DOC) from wastewater has become a major environmental concern because of its high toxicity even at low concentrations. Therefore, a technique was needed to reduce these pollutants. Ion exchange technology (IE) was used with AmberliteTM IR120 Na, AmberliteTM IR96RF, and AmberliteTM IR402, firstly by using anion and mixed bed system, where the following variables are investigated for the process of adsorption: The height of the bed in column (8,10 and 14 cm), different concentrations of (DOC) content at constant flow rate. The use of an ion exchanger unit (continuous system) with three columns (cation, anion, and mixed bed) was studied. The effect of the following variables, such as a change in temperatures (23,30 and 40 Co) and the change in flow rate (2,4,6 L/min) was studied. The results showed that the adsorption capacity decreased with increasing the flow rate. The linear equation models of (Langmuir, Freundlich, Timken, and Dubinin-Radushkevich) were used. The results were analyzed using three known models for equilibrium and temperature constant. Graphically, the Langmuir model was the most consistent with the adsorption results because it has the highest adsorption capacity and the highest correlation value of R2 = 0.97. The ion exchange column dynamics were studied using models such as (Thomas model). The results showed that the experimental results were well correlated with the model equations. While the tests showed that the removal rate of pollutants was up to 90% for organic compounds.    


Author(s):  
Lyazzat Serik ◽  
Olga Ibragimova ◽  
Gulim Ussenova ◽  
Nassiba Baimatova

The pollution of ambient air is one of the main sources of risk to human health in the world. There is a direct relationship between the level of air pollution and risk of the development of cancer, cardiovascular, respiratory and other diseases. Benzene, toluene, ethylbenzene and o-xylene (BTEX) are one of the most toxic volatile organic compounds. The aim of this study was to quantify BTEX in air of Taldykorgan, Kazakhstan using solid-phase microextraction followed by gas chromatography with mass-spectrometric detection. In different sampling seasons, average concentrations of four BTEX analytes varied from 7.5 to 27 µg/m3, from 15 to 250 µg/m3, from 2.4 to 12.8 µg/m3 and from 2.6 to 21 µg/m3, respectively. The highest concentrations of TEX were detected in autumn, while the highest concentrations of benzene were observed in winter. Toluene-to-benzene ratios in almost all measurements were above 1 indicating that the traffic emissions are the main source of air pollution with BTEX.


Sign in / Sign up

Export Citation Format

Share Document