Toward a Probabilistic Fourier Analysis on Audio Signals

2021 ◽  
Vol 5 (2) ◽  
pp. 91-102
Author(s):  
Hugo Carvalho
1994 ◽  
Vol 144 ◽  
pp. 279-282
Author(s):  
A. Antalová

AbstractThe occurrence of LDE-type flares in the last three cycles has been investigated. The Fourier analysis spectrum was calculated for the time series of the LDE-type flare occurrence during the 20-th, the 21-st and the rising part of the 22-nd cycle. LDE-type flares (Long Duration Events in SXR) are associated with the interplanetary protons (SEP and STIP as well), energized coronal archs and radio type IV emission. Generally, in all the cycles considered, LDE-type flares mainly originated during a 6-year interval of the respective cycle (2 years before and 4 years after the sunspot cycle maximum). The following significant periodicities were found:• in the 20-th cycle: 1.4, 2.1, 2.9, 4.0, 10.7 and 54.2 of month,• in the 21-st cycle: 1.2, 1.6, 2.8, 4.9, 7.8 and 44.5 of month,• in the 22-nd cycle, till March 1992: 1.4, 1.8, 2.4, 7.2, 8.7, 11.8 and 29.1 of month,• in all interval (1969-1992):a)the longer periodicities: 232.1, 121.1 (the dominant at 10.1 of year), 80.7, 61.9 and 25.6 of month,b)the shorter periodicities: 4.7, 5.0, 6.8, 7.9, 9.1, 15.8 and 20.4 of month.Fourier analysis of the LDE-type flare index (FI) yields significant peaks at 2.3 - 2.9 months and 4.2 - 4.9 months. These short periodicities correspond remarkably in the all three last solar cycles. The larger periodicities are different in respective cycles.


Author(s):  
L. S. Chumbley ◽  
M. Meyer ◽  
K. Fredrickson ◽  
F.C. Laabs

The development of a scanning electron microscope (SEM) suitable for instructional purposes has created a large number of outreach opportunities for the Materials Science and Engineering (MSE) Department at Iowa State University. Several collaborative efforts are presently underway with local schools and the Department of Curriculum and Instruction (C&I) at ISU to bring SEM technology into the classroom in a near live-time, interactive manner. The SEM laboratory is shown in Figure 1.Interactions between the laboratory and the classroom use inexpensive digital cameras and shareware called CU-SeeMe, Figure 2. Developed by Cornell University and available over the internet, CUSeeMe provides inexpensive video conferencing capabilities. The software allows video and audio signals from Quikcam™ cameras to be sent and received between computers. A reflector site has been established in the MSE department that allows eight different computers to be interconnected simultaneously. This arrangement allows us to demonstrate SEM principles in the classroom. An Apple Macintosh has been configured to allow the SEM image to be seen using CU-SeeMe.


1985 ◽  
Vol 46 (C10) ◽  
pp. C10-171-C10-173 ◽  
Author(s):  
D. N. BESHERS ◽  
V. F. CORONEL

Sign in / Sign up

Export Citation Format

Share Document