scholarly journals TWO RESULTS ON THE PALETTE INDEX OF GRAPHS

2021 ◽  
Vol 55 (1 (254)) ◽  
pp. 36-43
Author(s):  
Khachik S. Smbatyan

Given a proper edge coloring $\alpha$ of a graph $G$, we define the palette $S_G(v,\alpha)$ of a vertex $v\in V(G)$ as the set of all colors appearing on edges incident with $v$. The palette index $\check{s}(G)$ of $G$ is the minimum number of distinct palettes occurring in a proper edge coloring of $G$. A graph $G$ is called nearly bipartite if there exists $ v\in V(G)$ so that $G-v$ is a bipartite graph. In this paper, we give an upper bound on the palette index of a nearly bipartite graph $G$ by using the decomposition of $G$ into cycles. We also provide an upper bound on the palette index of Cartesian products of graphs. In particular, we show that for any graphs $G$ and $H$, $\check{s}(G\square H)\leq \check{s}(G)\check{s}(H)$.

2019 ◽  
Vol 53 (1 (248)) ◽  
pp. 3-12
Author(s):  
A.B. Ghazaryan

Given a proper edge coloring $ \phi $ of a graph $ G $, we define the palette $ S_G (\nu, \phi) $ of a vertex $ \nu \mathclose{\in} V(G) $ as the set of all colors appearing on edges incident with $ \nu $. The palette index $ \check{s} (G) $ of $ G $ is the minimum number of distinct palettes occurring in a proper edge coloring of $ G $. In this paper we give an upper bound on the palette index of a graph G in terms of cyclomatic number $ cyc(G) $ of $ G $ and maximum degree $ \Delta (G) $ of $ G $. We also give a sharp upper bound for the palette index of unicycle and bicycle graphs.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050035
Author(s):  
Danjun Huang ◽  
Xiaoxiu Zhang ◽  
Weifan Wang ◽  
Stephen Finbow

The adjacent vertex distinguishing edge coloring of a graph [Formula: see text] is a proper edge coloring of [Formula: see text] such that the color sets of any pair of adjacent vertices are distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of [Formula: see text] is denoted by [Formula: see text]. It is observed that [Formula: see text] when [Formula: see text] contains two adjacent vertices of degree [Formula: see text]. In this paper, we prove that if [Formula: see text] is a planar graph without 3-cycles, then [Formula: see text]. Furthermore, we characterize the adjacent vertex distinguishing chromatic index for planar graphs of [Formula: see text] and without 3-cycles. This improves a result from [D. Huang, Z. Miao and W. Wang, Adjacent vertex distinguishing indices of planar graphs without 3-cycles, Discrete Math. 338 (2015) 139–148] that established [Formula: see text] for planar graphs without 3-cycles.


2013 ◽  
Vol 333-335 ◽  
pp. 1452-1455
Author(s):  
Chun Yan Ma ◽  
Xiang En Chen ◽  
Fang Yang ◽  
Bing Yao

A proper $k$-edge coloring of a graph $G$ is an assignment of $k$ colors, $1,2,\cdots,k$, to edges of $G$. For a proper edge coloring $f$ of $G$ and any vertex $x$ of $G$, we use $S(x)$ denote the set of thecolors assigned to the edges incident to $x$. If for any two adjacent vertices $u$ and $v$ of $G$, we have $S(u)\neq S(v)$,then $f$ is called the adjacent vertex distinguishing proper edge coloring of $G$ (or AVDPEC of $G$ in brief). The minimum number of colors required in an AVDPEC of $G$ is called the adjacent vertex distinguishing proper edge chromatic number of $G$, denoted by $\chi^{'}_{\mathrm{a}}(G)$. In this paper, adjacent vertex distinguishing proper edge chromatic numbers of several classes of complete 5-partite graphs are obtained.


2021 ◽  
Vol 41 (2) ◽  
pp. 245-257
Author(s):  
Mohammad R. Piri ◽  
Saeid Alikhani

We introduce and study the dominated edge coloring of a graph. A dominated edge coloring of a graph \(G\), is a proper edge coloring of \(G\) such that each color class is dominated by at least one edge of \(G\). The minimum number of colors among all dominated edge coloring is called the dominated edge chromatic number, denoted by \(\chi_{dom}^{\prime}(G)\). We obtain some properties of \(\chi_{dom}^{\prime}(G)\) and compute it for specific graphs. Also examine the effects on \(\chi_{dom}^{\prime}(G)\), when \(G\) is modified by operations on vertex and edge of \(G\). Finally, we consider the \(k\)-subdivision of \(G\) and study the dominated edge chromatic number of these kind of graphs.


10.37236/705 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Carl Johan Casselgren

A proper edge coloring of a graph $G$ with colors $1,2,3,\dots$ is called an interval coloring if the colors on the edges incident with any vertex are consecutive. A bipartite graph is $(3,4)$-biregular if all vertices in one part have degree $3$ and all vertices in the other part have degree $4$. Recently it was proved [J. Graph Theory 61 (2009), 88-97] that if such a graph $G$ has a spanning subgraph whose components are paths with endpoints at 3-valent vertices and lengths in $\{2, 4, 6, 8\}$, then $G$ has an interval coloring. It was also conjectured that every simple $(3,4)$-biregular bipartite graph has such a subgraph. We provide some evidence for this conjecture by proving that a simple $(3,4)$-biregular bipartite graph has a spanning subgraph whose components are nontrivial paths with endpoints at $3$-valent vertices and lengths not exceeding $22$.


10.37236/7852 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Alex Cameron

Let $p$ and $q$ be positive integers such that $1 \leq q \leq {p \choose 2}$. A $(p,q)$-coloring of the complete graph on $n$ vertices $K_n$ is an edge coloring for which every $p$-clique contains edges of at least $q$ distinct colors. We denote the minimum number of colors needed for such a $(p,q)$-coloring of $K_n$ by $f(n,p,q)$. This is known as the Erdös-Gyárfás function. In this paper we give an explicit $(5,6)$-coloring with $n^{1/2+o(1)}$ colors. This improves the best known upper bound of $f(n,5,6)=O\left(n^{3/5}\right)$ given by Erdös and Gyárfás, and comes close to matching the order of the best known lower bound, $f(n,5,6) = \Omega\left(n^{1/2}\right)$.


Author(s):  
Vikram Srinivasan Thiru ◽  
S. Balaji

The strong edge coloring of a graph G is a proper edge coloring that assigns a different color to any two edges which are at most two edges apart. The minimum number of color classes that contribute to such a proper coloring is said to be the strong chromatic index of G. This paper defines the strong chromatic index for the generalized Jahangir graphs and the generalized Helm graphs.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Minhui Li ◽  
Shumin Zhang ◽  
Caiyun Wang ◽  
Chengfu Ye

Let G be a simple graph. A dominator edge coloring (DE-coloring) of G is a proper edge coloring in which each edge of G is adjacent to every edge of some color class (possibly its own class). The dominator edge chromatic number (DEC-number) of G is the minimum number of color classes among all dominator edge colorings of G , denoted by χ d ′ G . In this paper, we establish the bounds of the DEC-number of a graph, present the DEC-number of special graphs, and study the relationship of the DEC-number between G and the operations of G .


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
J. Cervantes-Ojeda ◽  
M. Gómez-Fuentes ◽  
D. González-Moreno ◽  
M. Olsen

Arainbowt-coloringof at-connected graphGis an edge coloring such that for any two distinct verticesuandvofGthere are at leasttinternally vertex-disjoint rainbow(u,v)-paths. In this work, we apply a Rank Genetic Algorithm to search for rainbowt-colorings of the family of Moore cages with girth six(t;6)-cages. We found that an upper bound in the number of colors needed to produce a rainbow 4-coloring of a(4;6)-cage is 7, improving the one currently known, which is 13. The computation of the minimum number of colors of a rainbow coloring is known to be NP-Hard and the Rank Genetic Algorithm showed good behavior finding rainbowt-colorings with a small number of colors.


10.37236/9307 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Ivan Aidun ◽  
Ralph Morrison

In this paper we provide the first systematic treatment of Cartesian products of graphs and their divisorial gonality, which is a tropical version of the gonality of an algebraic curve defined in terms of chip-firing.  We prove an upper bound on the gonality of the Cartesian product of any two graphs, and determine instances where this bound holds with equality, including for the $m\times n$ rook's graph with $\min\{m,n\}\leq 5$.  We use our upper bound to prove that Baker's gonality conjecture holds for the Cartesian product of any two graphs with two or more vertices each, and we determine precisely which nontrivial product graphs have gonality equal to Baker's conjectural upper bound.  We also extend some of our results to metric graphs.


Sign in / Sign up

Export Citation Format

Share Document