ON PALETTE INDEX OF UNICYCLE AND BICYCLE GRAPHS

2019 ◽  
Vol 53 (1 (248)) ◽  
pp. 3-12
Author(s):  
A.B. Ghazaryan

Given a proper edge coloring $ \phi $ of a graph $ G $, we define the palette $ S_G (\nu, \phi) $ of a vertex $ \nu \mathclose{\in} V(G) $ as the set of all colors appearing on edges incident with $ \nu $. The palette index $ \check{s} (G) $ of $ G $ is the minimum number of distinct palettes occurring in a proper edge coloring of $ G $. In this paper we give an upper bound on the palette index of a graph G in terms of cyclomatic number $ cyc(G) $ of $ G $ and maximum degree $ \Delta (G) $ of $ G $. We also give a sharp upper bound for the palette index of unicycle and bicycle graphs.

2021 ◽  
Vol 55 (1 (254)) ◽  
pp. 36-43
Author(s):  
Khachik S. Smbatyan

Given a proper edge coloring $\alpha$ of a graph $G$, we define the palette $S_G(v,\alpha)$ of a vertex $v\in V(G)$ as the set of all colors appearing on edges incident with $v$. The palette index $\check{s}(G)$ of $G$ is the minimum number of distinct palettes occurring in a proper edge coloring of $G$. A graph $G$ is called nearly bipartite if there exists $ v\in V(G)$ so that $G-v$ is a bipartite graph. In this paper, we give an upper bound on the palette index of a nearly bipartite graph $G$ by using the decomposition of $G$ into cycles. We also provide an upper bound on the palette index of Cartesian products of graphs. In particular, we show that for any graphs $G$ and $H$, $\check{s}(G\square H)\leq \check{s}(G)\check{s}(H)$.


10.37236/2101 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Mikio Kano ◽  
Saieed Akbari ◽  
Maryam Ghanbari ◽  
Mohammad Javad Nikmehr

Let $G$ be a graph. The core of $G$, denoted by $G_{\Delta}$, is the subgraph of $G$ induced by the vertices of degree $\Delta(G)$, where $\Delta(G)$ denotes the maximum degree of $G$. A $k$-edge coloring of $G$ is a function $f:E(G)\rightarrow L$ such that $|L| = k$ and $f(e_1)\neq f(e_2)$ for all two adjacent edges  $e_1$ and $e_2$ of $G$. The chromatic index of $G$, denoted by $\chi'(G)$, is the minimum number $k$ for which $G$ has a $k$-edge coloring.  A graph $G$ is said to be Class $1$ if $\chi'(G) = \Delta(G)$ and Class $2$ if $\chi'(G) = \Delta(G) + 1$. In this paper it is shown that every connected graph $G$ of even order and with $\Delta(G_{\Delta})\leq 2$ is Class $1$ if $|G_{\Delta}|\leq 9$ or $G_{\Delta}$ is a cycle of order $10$.


10.37236/7016 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Mingfang Huang ◽  
Michael Santana ◽  
Gexin Yu

A strong edge-coloring of a graph $G$ is a coloring of the edges such that every color class induces a matching in $G$. The strong chromatic index of a graph is the minimum number of colors needed in a strong edge-coloring of the graph. In 1985, Erdős and Nešetřil conjectured that every graph with maximum degree $\Delta$ has a strong edge-coloring using at most $\frac{5}{4}\Delta^2$ colors if $\Delta$ is even, and at most $\frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4}$ if $\Delta$ is odd. Despite recent progress for large $\Delta$ by using an iterative probabilistic argument, the only nontrivial case of the conjecture that has been verified is when $\Delta = 3$, leaving the need for new approaches to verify the conjecture for any $\Delta\ge 4$. In this paper, we apply some ideas used in previous results to an upper bound of 21 for graphs with maximum degree 4, which improves a previous bound due to Cranston in 2006 and moves closer to the conjectured upper bound of 20.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050035
Author(s):  
Danjun Huang ◽  
Xiaoxiu Zhang ◽  
Weifan Wang ◽  
Stephen Finbow

The adjacent vertex distinguishing edge coloring of a graph [Formula: see text] is a proper edge coloring of [Formula: see text] such that the color sets of any pair of adjacent vertices are distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of [Formula: see text] is denoted by [Formula: see text]. It is observed that [Formula: see text] when [Formula: see text] contains two adjacent vertices of degree [Formula: see text]. In this paper, we prove that if [Formula: see text] is a planar graph without 3-cycles, then [Formula: see text]. Furthermore, we characterize the adjacent vertex distinguishing chromatic index for planar graphs of [Formula: see text] and without 3-cycles. This improves a result from [D. Huang, Z. Miao and W. Wang, Adjacent vertex distinguishing indices of planar graphs without 3-cycles, Discrete Math. 338 (2015) 139–148] that established [Formula: see text] for planar graphs without 3-cycles.


2013 ◽  
Vol 333-335 ◽  
pp. 1452-1455
Author(s):  
Chun Yan Ma ◽  
Xiang En Chen ◽  
Fang Yang ◽  
Bing Yao

A proper $k$-edge coloring of a graph $G$ is an assignment of $k$ colors, $1,2,\cdots,k$, to edges of $G$. For a proper edge coloring $f$ of $G$ and any vertex $x$ of $G$, we use $S(x)$ denote the set of thecolors assigned to the edges incident to $x$. If for any two adjacent vertices $u$ and $v$ of $G$, we have $S(u)\neq S(v)$,then $f$ is called the adjacent vertex distinguishing proper edge coloring of $G$ (or AVDPEC of $G$ in brief). The minimum number of colors required in an AVDPEC of $G$ is called the adjacent vertex distinguishing proper edge chromatic number of $G$, denoted by $\chi^{'}_{\mathrm{a}}(G)$. In this paper, adjacent vertex distinguishing proper edge chromatic numbers of several classes of complete 5-partite graphs are obtained.


2021 ◽  
Vol 41 (2) ◽  
pp. 245-257
Author(s):  
Mohammad R. Piri ◽  
Saeid Alikhani

We introduce and study the dominated edge coloring of a graph. A dominated edge coloring of a graph \(G\), is a proper edge coloring of \(G\) such that each color class is dominated by at least one edge of \(G\). The minimum number of colors among all dominated edge coloring is called the dominated edge chromatic number, denoted by \(\chi_{dom}^{\prime}(G)\). We obtain some properties of \(\chi_{dom}^{\prime}(G)\) and compute it for specific graphs. Also examine the effects on \(\chi_{dom}^{\prime}(G)\), when \(G\) is modified by operations on vertex and edge of \(G\). Finally, we consider the \(k\)-subdivision of \(G\) and study the dominated edge chromatic number of these kind of graphs.


10.37236/7852 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Alex Cameron

Let $p$ and $q$ be positive integers such that $1 \leq q \leq {p \choose 2}$. A $(p,q)$-coloring of the complete graph on $n$ vertices $K_n$ is an edge coloring for which every $p$-clique contains edges of at least $q$ distinct colors. We denote the minimum number of colors needed for such a $(p,q)$-coloring of $K_n$ by $f(n,p,q)$. This is known as the Erdös-Gyárfás function. In this paper we give an explicit $(5,6)$-coloring with $n^{1/2+o(1)}$ colors. This improves the best known upper bound of $f(n,5,6)=O\left(n^{3/5}\right)$ given by Erdös and Gyárfás, and comes close to matching the order of the best known lower bound, $f(n,5,6) = \Omega\left(n^{1/2}\right)$.


10.37236/1474 ◽  
1999 ◽  
Vol 6 (1) ◽  
Author(s):  
Martin Juvan ◽  
Bojan Mohar ◽  
Robin Thomas

It is proved that for every integer $k\ge3$, for every (simple) series-parallel graph $G$ with maximum degree at most $k$, and for every collection $(L(e):e\in E(G))$ of sets, each of size at least $k$, there exists a proper edge-coloring of $G$ such that for every edge $e\in E(G)$, the color of $e$ belongs to $L(e)$.


Author(s):  
Vikram Srinivasan Thiru ◽  
S. Balaji

The strong edge coloring of a graph G is a proper edge coloring that assigns a different color to any two edges which are at most two edges apart. The minimum number of color classes that contribute to such a proper coloring is said to be the strong chromatic index of G. This paper defines the strong chromatic index for the generalized Jahangir graphs and the generalized Helm graphs.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Minhui Li ◽  
Shumin Zhang ◽  
Caiyun Wang ◽  
Chengfu Ye

Let G be a simple graph. A dominator edge coloring (DE-coloring) of G is a proper edge coloring in which each edge of G is adjacent to every edge of some color class (possibly its own class). The dominator edge chromatic number (DEC-number) of G is the minimum number of color classes among all dominator edge colorings of G , denoted by χ d ′ G . In this paper, we establish the bounds of the DEC-number of a graph, present the DEC-number of special graphs, and study the relationship of the DEC-number between G and the operations of G .


Sign in / Sign up

Export Citation Format

Share Document