scholarly journals The Nonlinear Bending Analysis for Circular Nano Plates Based on Modified Coupled Stress and Three- Dimensional Elasticity Theories

2021 ◽  
Vol 39 (2) ◽  
Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


1985 ◽  
Vol 52 (4) ◽  
pp. 801-805 ◽  
Author(s):  
P. R. Heyliger ◽  
J. N. Reddy

A quasi-three dimensional elasticity formulation and associated finite element model for the stress analysis of symmetric laminates with free-edge cap reinforcement are described. Numerical results are presented to show the effect of the reinforcement on the reduction of free-edge stresses. It is observed that the interlaminar normal stresses are reduced considerably more than the interlaminar shear stresses due to the free-edge reinforcement.


1995 ◽  
Vol 48 (11S) ◽  
pp. S61-S67 ◽  
Author(s):  
Carlos E. S. Cesnik ◽  
Dewey H. Hodges

An asymptotically exact methodology, based on geometrically nonlinear, three-dimensional elasticity, is presented for cross-sectional analysis of initially curved and twisted, nonhomogeneous, anisotropic beams. Through accounting for all possible deformation in the three-dimensional representation, the analysis correctly accounts for the complex elastic coupling phenomena in anisotropic beams associated with shear deformation. The analysis is subject only to the restrictions that the strain is small relative to unity and that the maximum dimension of the cross section is small relative to the wave length of the deformation and to the minimum radius of curvature and/or twist. The resulting cross-sectional elastic constants exhibit second-order dependence on the initial curvature and twist. As is well known, the associated geometrically-exact, one-dimensional equilibrium and kinematical equations also depend on initial twist and curvature. The corrections to the stiffness model derived herein are also necessary in general for proper representation of initially curved and twisted beams.


Sign in / Sign up

Export Citation Format

Share Document