scholarly journals On modified Kies distribution and its applications

2017 ◽  
Vol 51 (1) ◽  
pp. 41-60
Author(s):  
C. SATHEESH KUMAR ◽  
S. H. S. DHARMAJA

In this paper, we consider a class of bathtub-shaped hazard function distribution through modifying the Kies distribution and investigate some of its important properties by deriving expressions for its percentile function, raw moments, stress-strength reliability measure etc. The parameters of the distribution are estimated by the method of maximum likelihood and discussed some of its reliability applications with the help of certain real life data sets. In addition, the asymptotic behavior of the maximum likelihood estimators of the parameters of the distribution is examined by using simulated data sets.

2020 ◽  
Vol 8 (2) ◽  
pp. 521-548
Author(s):  
Rafid Alshkaki

In this paper, a generalized modification of the Kumaraswamy distribution is proposed, and its distributional and characterizing properties are studied. This distribution is closed under scaling and exponentiation, and has some well-known distributions as special cases, such as the generalized uniform, triangular, beta, power function, Minimax, and some other Kumaraswamy related distributions. Moment generating function, Lorenz and Bonferroni curves, with its moments consisting of the mean, variance, moments about the origin, harmonic, incomplete, probability weighted, L, and trimmed L moments, are derived. The maximum likelihood estimation method is used for estimating its parameters and applied to six different simulated data sets of this distribution, in order to check the performance of the estimation method through the estimated parameters mean squares errors computed from the different simulated sample sizes. Finally, four real-life data sets are used to illustrate the usefulness and the flexibility of this distribution in application to real-life data.  


Author(s):  
Muhammad H. Tahir ◽  
Muhammad Adnan Hussain ◽  
Gauss Cordeiro ◽  
Mahmoud El-Morshedy ◽  
Mohammed S. Eliwa

For bounded unit interval, we propose a new Kumaraswamy generalized (G) family of distributions from a new generator which could be an alternate to the Kumaraswamy-G family proposed earlier by Cordeiro and de-Castro in 2011. This new generator can also be used to develop alternate G-classes such as beta-G, McDonald-G, Topp-Leone-G, Marshall-Olkin-G and Transmuted-G for bounded unit interval. Some mathematical properties of this new family are obtained and maximum likelihood method is used for estimating the family parameters. We investigate the properties of one special model called a new Kumaraswamy-Weibull (NKwW) distribution. Parameter estimation is dealt and maximum likelihood estimators are assessed through simulation study. Two real life data sets are analyzed to illustrate the importance and flexibility of this distribution. In fact, this model outperforms some generalized Weibull models such as the Kumaraswamy-Weibull, McDonald-Weibull, beta-Weibull, exponentiated-generalized Weibull, gamma-Weibull, odd log-logistic-Weibull, Marshall-Olkin-Weibull, transmuted-Weibull, exponentiated-Weibull and Weibull distributions when applied to these data sets. The bivariate extension of the family is proposed and the estimation of parameters is given. The usefulness of the bivariate NKwW model is illustrated empirically by means of a real-life data set.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Pelumi E. Oguntunde ◽  
Mundher A. Khaleel ◽  
Mohammed T. Ahmed ◽  
Adebowale O. Adejumo ◽  
Oluwole A. Odetunmibi

Developing new compound distributions which are more flexible than the existing distributions have become the new trend in distribution theory. In this present study, the Lomax distribution was extended using the Gompertz family of distribution, its resulting densities and statistical properties were carefully derived, and the method of maximum likelihood estimation was proposed in estimating the model parameters. A simulation study to assess the performance of the parameters of Gompertz Lomax distribution was provided and an application to real life data was provided to assess the potentials of the newly derived distribution. Excerpt from the analysis indicates that the Gompertz Lomax distribution performed better than the Beta Lomax distribution, Weibull Lomax distribution, and Kumaraswamy Lomax distribution.


2019 ◽  
Vol 52 (2) ◽  
pp. 173-186
Author(s):  
C. SATHEESH KUMAR ◽  
G. V. ANILA

Here we introduce a new class of skew normal distribution as a generalization of the extended skew curved normal distribution of Kumar and Anusree (J. Statist. Res., 2017) and investigate some of its important statistical properties. The location-scale extension of the proposed class of distribution is also defined and discussed the estimation of its parameters by method of maximum likelihood. Further, a real life data set is considered for illustrating the usefulness of the model and a brief simulation study is attempted for assessing the performance of the estimators.


2020 ◽  
Vol 70 (6) ◽  
pp. 1491-1510
Author(s):  
Muhammad Adnan Hussain ◽  
Muhammad Hussain Tahir ◽  
Gauss M. Cordeiro

AbstractThe Kumaraswamy generalized family of distributions proposed by Cordeiro and de-Castro (2011), has received increased attention in modern distribution theory with 624 google citations, and more than 50 special models have been studied so far. We define another generator, and then propose a new Kumaraswamy generalized family of distributions by inducting this new generator. Some useful properties of the proposed family are obtained such as quantiles, linear representation of the density, moments and generating function. The method of maximum likelihood is used for estimating family parameters. The properties of a special model of the family, called new Kumaraswamy-Burr XII distribution, are reported. A simulation study is conducted to assess the performance of maximum likelihood estimates of the proposed model. Two real-life data sets are analyzed to illustrate the flexibility of proposed model.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1989
Author(s):  
Muhammad H. Tahir ◽  
Muhammad Adnan Hussain ◽  
Gauss M. Cordeiro ◽  
M. El-Morshedy ◽  
M. S. Eliwa

For bounded unit interval, we propose a new Kumaraswamy generalized (G) family of distributions through a new generator which could be an alternate to the Kumaraswamy-G family proposed earlier by Cordeiro and de Castro in 2011. This new generator can also be used to develop alternate G-classes such as beta-G, McDonald-G, Topp-Leone-G, Marshall-Olkin-G, and Transmuted-G for bounded unit interval. Some mathematical properties of this new family are obtained and maximum likelihood method is used for the estimation of G-family parameters. We investigate the properties of one special model called the new Kumaraswamy-Weibull (NKwW) distribution. Parameters of NKwW model are estimated by using maximum likelihood method, and the performance of these estimators are assessed through simulation study. Two real life data sets are analyzed to illustrate the importance and flexibility of the proposed model. In fact, this model outperforms some generalized Weibull models such as the Kumaraswamy-Weibull, McDonald-Weibull, beta-Weibull, exponentiated-generalized Weibull, gamma-Weibull, odd log-logistic-Weibull, Marshall-Olkin-Weibull, transmuted-Weibull and exponentiated-Weibull distributions when applied to these data sets. The bivariate extension of the family is also proposed, and the estimation of parameters is dealt. The usefulness of the bivariate NKwW model is illustrated empirically by means of a real-life data set.


2015 ◽  
Vol 4 (4) ◽  
pp. 132 ◽  
Author(s):  
Ahmed Z. Afify ◽  
G. G. Hamedani ◽  
Indranil Ghosh ◽  
M. E. Mead

<p>This paper introduces a new four-parameter lifetime model, which extends the Marshall-Olkin Fr\'{e}chet distribution introduced by Krishna et al. (2013), called the transmuted Marshall-Olkin Fr\'{e}chet distribution. Various structural properties including ordinary and incomplete moments, quantile and generating function, R\'{e}nyi and q-entropies and order statistics are<br />derived. The maximum likelihood method is used to estimate the model parameters. We illustrate the superiority of the proposed distribution over other existing distributions in the literature in modeling two real life data sets.</p>


2020 ◽  
Vol 53 (2) ◽  
pp. 111-127
Author(s):  
C. Satheesh Kumar ◽  
Rosmi Jose

In this paper, we propose an alternative version to the Laplace distribution which we named as “alternative Laplace distribution (ALD)” and discuss some of its important properties. A location-scale extension of the ALD is considered and the maximum likelihood estimation procedures for estimating its parameters is described. Further, the distribution is fitted to certain real life data sets for illustrating the utility of the model. A simulation study is carried out to examine the performance of likelihood estimators of the parameters of the distribution.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huda M. Alshanbari ◽  
Muhammad Ijaz ◽  
Syed Muhammad Asim ◽  
Abd Al-Aziz Hosni El-Bagoury ◽  
Javid Gani Dar

The rationale of the paper is to present a new probability distribution that can model both the monotonic and nonmonotonic hazard rate shapes and to increase their flexibility among other probability distributions available in the literature. The proposed probability distribution is called the New Weighted Lomax (NWL) distribution. Various statistical properties have been studied including with the estimation of the unknown parameters. To achieve the basic objectives, applications of NWL are presented by means of two real-life data sets as well as a simulated data. It is verified that NWL performs well in both monotonic and nonmonotonic hazard rate function than the Lomax (L), Power Lomax (PL), Exponential Lomax (EL), and Weibull Lomax (WL) distribution.


Author(s):  
Mohamed Ibrahim Mohamed ◽  
Laba Handique ◽  
Subrata Chakraborty ◽  
Nadeem Shafique Butt ◽  
Haitham M. Yousof

In this article an attempt is made to introduce a new extension of the Fréchet model called the Xgamma Fréchet model. Some of its properties are derived. The estimation of the parameters via different estimation methods are discussed. The performances of the proposed estimation methods are investigated through simulations as well as real life data sets. The potentiality of the proposed model is established through modelling of two real life data sets. The results have shown clear preference for the proposed model compared to several know competing ones.


Sign in / Sign up

Export Citation Format

Share Document