scholarly journals Numerical Analysis of Gravitational Vortex Chamber

Author(s):  
Shahadat Hossain Zehad ◽  
Sadman Al Faiyaz ◽  
Md. Redwan Islam ◽  
Dr. -Ing. Irfan Ahmed

A rotating mass of fluid is known as vortex and the motion of the rotating mass of fluid is known as vortex motion. Vorticity is the circulation per unit area. In this research simulation of a vortex chamber is to be carried out in ANSYS CFD taking water as fluid domain for generating a water vortex that is capable enough to move a turbine for electricity generation. The CAD modelling of the setup was set down and simulation was done in fine mesh by taking suitable wall function in the model of a cylindrical chamber along with a rectangular channel with a contraction portion at the end of it where good amount of vortex generation was acquired by observing velocity and pressure by setting different parameters. The results shows the pressure and velocity contours with 3D velocity streamline flow and the curve of the velocity and pressure curve shows the decrease of pressure and increase of velocity from inlet to outlet that leads to a decent vortex generation.

Author(s):  
Songwan Jin ◽  
Choonghyo Choi ◽  
Kenneth S. Breuer ◽  
Jung Yul Yoo

Effects of cross-section geometry of capillary on the evaporation from the meniscus have been investigated by adopting several circular and rectangular capillaries. The evaporating meniscus shape, evaporation rate and flow near the evaporating meniscus of various liquids such as water, ethanol and methanol are determined. The shapes of water and ethanol menisci in circular capillary are quite different from each other due to the difference in surface tension. But the difference in meniscus shapes is relatively small in rectangular channel. The averaged evaporation fluxes in rectangular channel are much larger than that in circular capillary. The rotating vortex motion is observed near the evaporating menisci of ethanol and methanol except for the case of methanol in 200 × 20-μm capillary. The reason for this is considered to be the existence of the corner menisci at the four corners.


2001 ◽  
Vol 21 (5) ◽  
pp. 79-85
Author(s):  
Kazuyoshi MATSUZAKI ◽  
Mizue MUNEKATA ◽  
Hideki OHBA

Author(s):  
Neng-Bo He ◽  
S.W. Hui

Monolayers and planar "black" lipid membranes have been widely used as models for studying the structure and properties of biological membranes. Because of the lack of a suitable method to prepare these membranes for electron microscopic observation, their ultrastructure is so far not well understood. A method of forming molecular bilayers over the holes of fine mesh grids was developed by Hui et al. to study hydrated and unsupported lipid bilayers by electron diffraction, and to image phase separated domains by diffraction contrast. We now adapted the method of Pattus et al. of spreading biological membranes vesicles on the air-water interfaces to reconstitute biological membranes into unsupported planar films for electron microscopic study. hemoglobin-free human erythrocyte membrane stroma was prepared by hemolysis. The membranes were spreaded at 20°C on balanced salt solution in a Langmuir trough until a surface pressure of 20 dyne/cm was reached. The surface film was repeatedly washed by passing to adjacent troughs over shallow partitions (fig. 1).


Author(s):  
B. Lencova ◽  
G. Wisselink

Recent progress in computer technology enables the calculation of lens fields and focal properties on commonly available computers such as IBM ATs. If we add to this the use of graphics, we greatly increase the applicability of design programs for electron lenses. Most programs for field computation are based on the finite element method (FEM). They are written in Fortran 77, so that they are easily transferred from PCs to larger machines.The design process has recently been made significantly more user friendly by adding input programs written in Turbo Pascal, which allows a flexible implementation of computer graphics. The input programs have not only menu driven input and modification of numerical data, but also graphics editing of the data. The input programs create files which are subsequently read by the Fortran programs. From the main menu of our magnetic lens design program, further options are chosen by using function keys or numbers. Some options (lens initialization and setting, fine mesh, current densities, etc.) open other menus where computation parameters can be set or numerical data can be entered with the help of a simple line editor. The "draw lens" option enables graphical editing of the mesh - see fig. I. The geometry of the electron lens is specified in terms of coordinates and indices of a coarse quadrilateral mesh. In this mesh, the fine mesh with smoothly changing step size is calculated by an automeshing procedure. The options shown in fig. 1 allow modification of the number of coarse mesh lines, change of coordinates of mesh points or lines, and specification of lens parts. Interactive and graphical modification of the fine mesh can be called from the fine mesh menu. Finally, the lens computation can be called. Our FEM program allows up to 8000 mesh points on an AT computer. Another menu allows the display of computed results stored in output files and graphical display of axial flux density, flux density in magnetic parts, and the flux lines in magnetic lenses - see fig. 2. A series of several lens excitations with user specified or default magnetization curves can be calculated and displayed in one session.


2018 ◽  
Vol 5 (1) ◽  
pp. 31-36
Author(s):  
Md Monirul Islam ◽  
Muztuba Ahbab ◽  
Md Robiul Islam ◽  
Md Humayun Kabir

For many solitary wave applications, various approximate models have been proposed. Certainly, the most famous solitary wave equations are the K-dV, BBM and Boussinesq equations. The K-dV equation was originally derived to describe shallow water waves in a rectangular channel. Surprisingly, the equation also models ion-acoustic waves and magneto-hydrodynamic waves in plasmas, waves in elastic rods, equatorial planetary waves, acoustic waves on a crystal lattice, and more. If we describe all of the above situation, we must be needed a solution function of their governing equations. The Tan-cot method is applied to obtain exact travelling wave solutions to the generalized Korteweg-de Vries (gK-dV) equation and generalized Benjamin-Bona- Mahony (BBM) equation which are important equations to evaluate wide variety of physical applications. In this paper we described the soliton behavior of gK-dV and BBM equations by analytical system especially using Tan-cot method and shown in graphically. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 5(1), Dec 2018 P 31-36


2015 ◽  
Vol 6 (2) ◽  
pp. 89-93
Author(s):  
S. Bodzás ◽  
I. Dudás

The objectives of this publication are the analysis of surfaces and edges of a new geometric spiroid hob with arched profile in axial section and the definition of their equations for computer modelling. On the basis of this we will work out the CAD model of hob for our further geometric calculations.


2005 ◽  
Vol 36 (4) ◽  
pp. 311-318 ◽  
Author(s):  
R. Bunker ◽  
M. YA. Belen'kii ◽  
M. A. Gotovskii ◽  
B. S. Fokin ◽  
S. A. Isaev

Sign in / Sign up

Export Citation Format

Share Document