Arsenical native copper from Au-Cu porphyry Ak-Sug deposit, Eastern Tyva

2021 ◽  
pp. 77-92
Author(s):  
Gennadiy Shvedov ◽  
Pavel Samorodsky ◽  
Vladimir Makarov ◽  
Egor Muromtsev ◽  
Maksim Shadchin ◽  
...  

The geology of the Ak-Sug Au-Cu-porphyry deposit in the eastern Tyva is considered. The distribution of native copper in ores of the deposits was studied. It has been established that the native copper is of both hypogene and supergene origin. The hypogene native copper is characterized by an elevated arsenic content (up to 4.4 %) and occurs in association with copper arsenides, native silver, zircon, brannerite, xenotime-(Y), florensite-(Ce), chalcocite, and berzelianite. Hypogene native copper is confined to ore schistosity zones .

2018 ◽  
Vol 56 ◽  
pp. 04017
Author(s):  
Natalya Lavrik ◽  
Natalya Litvinova ◽  
Tatyana Aleksandrova ◽  
Valentina Stepanova ◽  
Alexandra Lavrik

In this article shown platinum mineralization comparative characteristics for three deposits: Kondoer-traditional unique deposit and other two probably alternative source of platinum: the Poperechnoe ironmanganese deposit and the Malmyzh copper-porphyry deposit. Platinoids of the Kondoer deposit are the chain Pt>>Ir>Os>Ru=Rh>Pd. The presences of platinum crystals are characteristic, there are over 50 rare and new platinoids minerals in different combinations. There are gold and silver. Platinoids from the iron-manganese ore of Poperechnoe are as Pt>>Rh≈Ir>Ru≈Os>Pd. A scattered dissemination of arsenide sulfate and sulfides of Rh, Ir, Ru, Os are noted in the platinum. Palladium is present as impurities in gold and platinum. The gold content is different-with admixtures Ag, Pb, Cd, Fe. At this stage the platinoids content in oxidized ores of the Malmyzh gold-copper porphyry deposit is Pt ≈ Pd. The gold is present as electrum. There is native silver cadmium.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1426
Author(s):  
Beata Naglik ◽  
Magdalena Dumańska-Słowik ◽  
Tomasz Toboła ◽  
Paweł Derkowski ◽  
Ryszard Habryn ◽  
...  

Pyrite from the central part of the Myszków porphyry deposit in Poland was investigated using a combination of reflected and transmitted polarizing microscopy, back-scattered imaging with energy-dispersive X-ray spectroscopy, and Raman micro-spectroscopy. Five generations of pyrite (I–V) found in hydrothermal veins were distinguished, differing in morphology, microtexture, and the types and amounts of solid inclusions. In general, pyrite hosts a diversity of mineral inclusions, including both gangue and ore phases, i.e., chlorite, quartz, monazite, cerianite-(Ce), xenotime, K-feldspars, albite, sericite, barite, magnetite, chalcopyrite, galena, sphalerite, bastnaesite (Ce), bismuthinite, native silver, cassiterite, rutile, anatase, and aikinite-group species. The presence of inclusions is good evidence of various stages of the evolution of the hydrothermal lode system ranging from high- to low-temperature conditions. During the formation of stockworks, some fluctuations in the physicochemical conditions of mineralizing fluids were indicated by the occurrence of cassiterite formed from acidic, reducing solutions, and hematite hosted in xenotime or REE phases found in pyrite, which signal more oxidizing conditions. Periodically, some episodes of boiling in the hydrothermal, porphyry-related system were recorded. They were mainly evidenced by the presence of (1) lattice-bladed calcite found in the close vicinity of pyrite II, (2) irregular grain edges of pyrite I, (3) clustered micropores in pyrite I, and (4) the variety of mineral inclusions hosted in I and II generations of pyrite.


2013 ◽  
Vol 37 (5) ◽  
pp. 735
Author(s):  
Yanfang ZHAO ◽  
Yuanhui DUAN ◽  
Derong SHANG ◽  
Yuxiu ZHAI ◽  
Xiaofeng SHENG ◽  
...  

2019 ◽  
Vol 70 (7) ◽  
pp. 2330-2334
Author(s):  
Mihaela Ciopec ◽  
Adina Negrea ◽  
Narcis Duteanu ◽  
Corneliu Mircea Davidescu ◽  
Iosif Hulka ◽  
...  

Arsenic content in groundwater�s present a wide range of concentration, ranging from hundreds of micrograms to thousands of micrograms of arsenic per litter, while the maximum permitted arsenic concentration established by World Health Organization (WHO) is 10 mg L-1. According to the WHO all people, regardless of their stage of development and their social economic condition, have the right to have access to adequate drinking water. The most efficient and economic technique used for arsenic removal is represented by adsorption. In order to make this remediation technique more affordable and environmentally friendly is important to new materials with advance adsorbent properties. Novelty of present paper is represented by the usage of a new adsorbent material obtained by physical - chemical modification of Amberlite XAD polymers using crown ethers followed by iron doping, due to well-known affinity of arsenic for iron ions. Present paper aims to test the obtained modified Amberlite polymer for arsenic removal from real groundwater by using adsorption in a fixed bed column, establishing in this way a mechanism for the adsorption process. During experimental work was studied the influence of competing ions from real water into the arsenic adsorption process.


2017 ◽  
Author(s):  
Peishu Li ◽  
◽  
Alan E. Boudreau ◽  
Alan E. Boudreau

Sign in / Sign up

Export Citation Format

Share Document