scholarly journals Analysis of Spatial and Temporal Variation of Land Use/Land Cover and Impacts on Climate in Urban Areas, Sri Lanka with Special Reference to Hambantota Divisional Secretariat Division (2008- 2019)

Author(s):  
Edirisooriya K V U I ◽  
Senevirathna E M T K ◽  
Edirisooriya K V D ◽  
Dheerasinghe G W M M K ◽  
Dauglas D L P M
2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

Author(s):  
Ibrar ul Hassan Akhtar ◽  
Athar Hussain ◽  
Kashif Javed ◽  
Hammad Ghazanfar

Developing countries like Pakistan is among those where lack of adoption to science and technology advancement is a major constraint for Satellite Remote Sensing use in crops and land use land cover digital information generation. Exponential rise in country population, increased food demand, limiting natural resources coupled with migration of rural community to urban areas had further led to skewed official statistics. This study is an attempt to demonstrate the possible use of freely available satellite data like Landsat8 under complex cropping system of Okara district of Punjab, Pakistan. An Integrated approach has been developed for the satellite data based crops and land use/cover spatial area estimation. The resultant quality was found above 96% with Kappa statistics of 0.95. Land utilization statistics provided detail information about cropping patterns as well as land use land cover status. Rice was recorded as most dominating crop in term of cultivation area of around 0.165 million ha followed by autumn maize 0.074 million ha, Fallow crop fields 0.067 million ha and Sorghum 0.047 million ha. Other minor crops observed were potato, fodder and cotton being cultivated on less than 0.010 million ha. Population settlements were observed over an area of around 0.081 million ha of land. 


2010 ◽  
Vol 1 (2) ◽  
pp. 55-70 ◽  
Author(s):  
Hyun Joong Kim

Rapidly growing urban areas tend to reveal distinctive spatial and temporal variations of land use/land cover in a locally urbanized environment. In this article, the author analyzes urban growth phenomena at a local scale by employing Geographic Information Systems, remotely sensed image data from 1984, 1994, and 2004, and landscape shape index. Since spatial patterns of land use/land cover changes in small urban areas are not fully examined by the current GIS-based modeling studies or simulation applications, the major objective of this research is to identify and examine the spatial and temporal dynamics of land use changes of urban growth at a local scale. Analytical results demonstrate that sizes, locations, and shapes of new developments are spatio-temporally associated with their landscape variations and major transportation arteries. The key findings from this study contribute to GIS-based urban growth modeling studies and urban planning practices for local communities.


Author(s):  
Ujjwala Khare ◽  
Prajakta Thakur

<p>The expansion of urban areas is common in metropolitan cities in India. Pune also has experienced rapid growth in the fringe areas of the city. This is mainly on account of the development of the Information Technology (IT) Parks. These IT Parks have been established in different parts of Pune city. They include Hinjewadi, Kharadi, Talwade and others like the IT parks in Magarpatta area. The IT part at Talwade is located to close to Pune Nashik Highway has had an impact on the villages located around it. The surrounding area includes the villages of Talwade, Chikhli, Nighoje, Mahalunge, Khalumbre and Sudumbre.</p> <p>The changes in the land use that have occurred in areas surrounding Talwade IT parks during the last three decades have been studied by analyzing the LANDSAT images of different time periods. The satellite images of the 1992, 2001 and 2011 were analyzed to detect the temporal changes in the land use and land cover.</p> <p>This paper attempts to study the changes in land use / land cover which has taken place in these villages in the last two decades. Such a study can be done effectively with the help of remote sensing and GIS techniques. The tertiary sector has experienced a rapid growth especially during the last decade near the IT Park. The occupation structure of these villages is also related to the changes due to the development of the IT Park.</p> <p>The land use of study area has been analysed using the ground truth applied to the satellite images at decadal interval. Using the digital image processing techniques, the satellite images were then classified and land use / land cover maps were derived. The results show that the area under built-up land has increased by around 14 per cent in the last 20 years. On the contrary, the land under agriculture, barren, pasture has decreased significantly.</p>


Author(s):  
B. İşler ◽  
Z. Aslan

Abstract. The increase in the world population and the migration of people from rural to urban areas causes an increase in artificial surfaces and causes many negative effects on the ecosystem, regional climate variations and global diversity. Nowadays, as the effects of climate change are felt more and more, it has gained importance in researches on this subject. Therefore, the estimation of the change in the vegetation density for the coming years and the determination of the land use / land cover (LULC) change in cities are very essential for urban planning. In this study, the effects of regional urbanization on vegetation are examined by using satellite data and atmospheric variables. In the vegetation analysis, multi-time index values obtained from TERRA-MODIS satellite, EVI (Enhanced Vegetation Index) and LST (Land Surface Temperature) were taken into account between the years of 2005 and 2018 in Alanya, Turkey. Temperature and precipitation were selected as the atmospheric variables and expected variations in EVI value until 2030 were estimated. In the study employed a wavelet-transformed artificial neural network (WANN) model to generate long-term (12-year) EVI forecasts using LST, temperature and precipitation. The relationship between land use / land cover and urbanization is investigated with NDBI (Normalized Difference Built-up Index) data obtained from the Landsat 8 OLI / TIRS satellite sensor. The simulation results show that The EVI value, which was 0.30 in 2018, will decrease to 0.25 in 2030.


Author(s):  
Ibrar ul Hassan Akhtar ◽  
Athar Hussain ◽  
Kashif Javed ◽  
Hammad Ghazanfar

Developing countries like Pakistan is among those where lack of adoption to science and technology advancement is major constraint for Satellite Remote Sensing use in crops and land use land cover digital information generation. Exponential rise in country population, increased food demand, limiting natural resources coupled with migration of rural community to urban areas had further led to skewed official statistics. This study is an attempt to demonstrate the possible use of freely available satellite data like Landsat8 under complex cropping system of Okara district of Punjab, Pakistan. An Integrated approach has been developed for the satellite data based crops and land use/cover spatial area estimation. The resultant quality was found above 96% with Kappa statistics of 0.95. Land utilization statistics provided detail information about cropping patterns as well as land use land cover status. Rice was recorded as most dominating crop in term of cultivation area of around 0.165 million ha followed by autumn maize 0.074 million ha, Fallow crop fields 0.067 million ha and Sorghum 0.047 million ha. Other minor crops observed were potato, fodder and cotton being cultivated on less than 0.010 million ha. Population settlements were observed over an area of around 0.081 million ha of land.&nbsp;


2020 ◽  
Vol 2 (1) ◽  
pp. 19-36
Author(s):  
Sudip Raj Regmi ◽  
Mahendra Singh Thapa ◽  
Raju Raj Regmi

Geospatial tools play an important role in monitoring Land Use Land Cover (LULC) dynamics. This study assessed the extent of LULC changes during 2003, 2010 and 2018 using temporal satellite imageries, computed the rate of change in area of Phewa Lake and explored the drivers of LULC change and lake area change in Phewa watershed. It used Landsat Imageries for 2003, 2010 and 2018 and carried out purposive household survey (N=60), key informant survey (N=5), focus group discussion (N=4) and direct field observation to explore the drivers of LULC change and lake area change. It generated LULC maps by using supervised classification and computed LULC change by applying post classification change detection technique. On screen digitization was done to find the area of Phewa Lake during 2010 and 2018. Agricultural land and urban areas were found to have increased by 11.63% and 1.46% respectively while forest area, barren land and water bodies were found to have decreased by 9.21%, 3.56% and 0.5% respectively between 2003 and 2010. Forest area, urban areas and barren land were found to have increased by 5.9%, 3.28% and 5.02% respectively while agricultural landand water bodies were observed to have decreased by 7.83% and 0.16% respectively between 2010 and 2018. During 2010-2018, rate of change in lake area was found to have decreased by 0.61% with periodic annual decrement by 2.59 ha. The drivers responsible for LULC change were alternative form of energy, community forestry, promotion of private forestry, migration for foreign employment, inadequate market price of agricultural products, road construction, soil erosion and population pressure. Lake area was found to have decreased due to sedimentation, encroachment and road construction. Further study is important to know the exact contributions of these drivers of LULC change and lake area change for the sustainability of Phewa watershed.


2020 ◽  
Vol 12 (17) ◽  
pp. 2829 ◽  
Author(s):  
Robinson Mugo ◽  
Rose Waswa ◽  
James W. Nyaga ◽  
Antony Ndubi ◽  
Emily C. Adams ◽  
...  

The Lake Victoria Basin (LVB) is a significant resource for five states within East Africa, which faces major land use land cover changes that threaten ecosystem integrity and ecosystem services derived from the basin’s resources. To assess land use land cover changes between 1985 and 2014, and subsequently determine the trends and drivers of these changes, we used a series of Landsat images and field data obtained from the LVB. Landsat image pre-processing and band combinations were done in ENVI 5.1. A supervised classification was applied on 118 Landsat scenes using the maximum likelihood classifier in ENVI 5.1. The overall accuracy of classified images was computed for the 2014 images using 124 reference data points collected through stratified random sampling. Computations of area under various land cover classes were calculated between the 1985 and 2014 images. We also correlated the area from natural vegetation classes to farmlands and settlements (urban areas) to explore relationships between land use land cover conversions among these classes. Based on our land cover classifications, we obtained overall accuracy of 71% and a moderate Kappa statistic of 0.56. Our results indicate that the LVB has undergone drastic changes in land use land cover, mainly driven by human activities that led to the conversion of forests, woodlands, grasslands, and wetlands to either farmlands or settlements. We conclude that information from this work is useful not only for basin-scale assessments and monitoring of land cover changes but also for targeting, prioritizing, and monitoring of small scale, community led efforts to restore degraded and fragmented areas in the basin. Such efforts could mitigate the loss of ecosystem services previously derived from large contiguous land covers which are no longer tenable to restore. We recommend adoption of a basin scale, operational, Earth observation-based, land use change monitoring framework. Such a framework can facilitate rapid and frequent assessments of gains and losses in specific land cover classes and thus focus strategic interventions in areas experiencing major losses, through mitigation and compensatory approaches.


2020 ◽  
Vol 11 (5) ◽  
pp. 529-535
Author(s):  
Dan Abudu ◽  
Nigar Sultana Parvin ◽  
Geoffrey Andogah

Conventional approaches for urban land use land cover classification and quantification of land use changes have often relied on the ground surveys and urban censuses of urban surface properties. Advent of Remote Sensing technology supporting metric to centimetric spatial resolutions with simultaneous wide coverage, significantly reduced huge operational costs previously encountered using ground surveys. Weather, sensor’s spatial resolution and the complex compositions of urban areas comprising concrete, metallic, water, bare- and vegetation-covers, limits Remote Sensing ability to accurately discriminate urban features. The launch of Sentinel-1 Synthetic Aperture Radar, which operates at metric resolution and microwave frequencies evades the weather limitations and has been reported to accurately quantify urban compositions. This paper assessed the feasibility of Sentinel-1 SAR data for urban land use land cover classification by reviewing research papers that utilised these data. The review found that since 2014, 11 studies have specifically utilised the datasets.


Sign in / Sign up

Export Citation Format

Share Document