scholarly journals Efficacy of Trichoderma sp. to Control Lasiodiplodia theobromae, Casual Agent of Sweetpotato Root Rot Disease

2003 ◽  
Vol 3 (1) ◽  
pp. 61-73
Author(s):  
Manuel Palomar ◽  
◽  
Victoria Palermo

Microbial control of sweetpotato root rot pathogen (Lasiodiplodia thebromae (Pat.) Griff. & Maubi.) was studied with the use of an antagonist (Trichoderma sp.) under screenhouse and field conditions. Application of 10-60g Trichoderma FI7c suppressed L. theobromae infection and reduced the incidence of root rotting during storage especially if applied two to three months after planting of sweetpotato in pots. Likewise, in field experiments, regardless of inoculum densities of Trichoderma FI7c (50, 75 and 100 g), root infection was reduced during storage when the antagonist was applied two and three months after planting than when applied during planting to one month. Control provided by Trichoderma FI7c was economically sound and even better compared to the effect of Benlate, a systemic fungicide.

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Farid Abd-El-Kareem ◽  
Ibrahim E. Elshahawy ◽  
Mahfouz M. M. Abd-Elgawad

Abstract Background Black root rot of strawberry plants caused by Rhizoctonia solani, Fusarium solani, and Pythium sp. is a serious disease in Egypt. Biocontrol agents have frequently proved to possess paramount and safe tools against many diseases. The impact of soil treatments with 3 Bacillus pumilus isolates on black root rot disease of strawberry plants caused by R. solani, F., and Pythium sp. under laboratory and field conditions was examined herein on the commonly used ‘Festival’ strawberry cultivar. To increase the bacterial adhesion and distribution on the roots, each seedling was dipped in bacterial cell suspension at 1 × 108 colony-forming units/ml of each separate bacterial isolate for 30 min then mixed with 5% Arabic gum. Results The tested B. pumilus isolates significantly reduced the growth area of these 3 fungi. The two bacterial isolates Nos. 2 and 3 reduced the growth area by more than 85.2, 83.6, and 89.0% for R. solani, F. solani, and Pythium sp., respectively. Likewise, the 3 bacterial isolates significantly (P ≤ 0.05) inhibited the disease under field conditions. Isolates Nos. 2 and 3 suppressed the disease incidence by 64.4 and 68.9% and disease severity by 65.3 and 67.3%, respectively. The fungicide Actamyl had effect similar to that of the 2 isolates. B. pumilus isolates significantly enhanced growth parameters and yields of strawberry plants; isolates Nos. 2 and 3 raised the yield by 66.7 and 73.3%, respectively. Conclusions Bacillus pumilus isolates could effectively manage the black rot disease in strawberry herein. Due to the significant impact of the root rot disease on strawberry yield, B. pumilus should be further tested to manage the disease on strawberry on large scale in Egypt.


2015 ◽  
Vol 28 (12) ◽  
pp. 1288-1303 ◽  
Author(s):  
Qing Wang ◽  
Stefanie Vera Buxa ◽  
Alexandra Furch ◽  
Wolfgang Friedt ◽  
Sven Gottwald

Fusarium graminearum is one of the most common and potent fungal pathogens of wheat (Triticum aestivum), known for causing devastating spike infections and grain yield damage. F. graminearum is a typical soil-borne pathogen that builds up during consecutive cereal cropping. Speculation on systemic colonization of cereals by F. graminearum root infection have long existed but have not been proven. We have assessed the Fusarium root rot disease macroscopically in a diverse set of 12 wheat genotypes and microscopically in a comparative study of two genotypes with diverging responses. Here, we show a ‘new’ aspect of the F. graminearum life cycle, i.e., the head blight fungus uses a unique root-infection strategy with an initial stage typical for root pathogens and a later stage typical for spike infection. Root colonization negatively affects seedling development and leads to systemic plant invasion by tissue-adapted fungal strategies. Another major outcome is the identification of partial resistance to root rot. Disease severity assessments and histological examinations both demonstrated three distinct disease phases that, however, proceeded differently in resistant and susceptible genotypes. Soil-borne inoculum and root infection are considered significant components of the F. graminearum life cycle with important implications for the development of new strategies of resistance breeding and disease control.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
K. Mohamed Al-Sman ◽  
Kamal Abo-Elyousr ◽  
Amal Eraky ◽  
Aida El-Zawahry

AbstractThis study aimed to investigate the impact of two isolates of Bacillus simplex (PHYB1 and PHYB9) for controlling the root rot disease of black cumin (Nigella sativa) caused by Fusarium camptoceras (PHYF1) under greenhouse and field conditions at Assiut Governorate, Egypt. The highest reduction percentage of infection (22.5%) was recorded by the treatment of PHYB1 as suspension than the control (60%). Both isolates of Bacillus spp. provided the root and foliar dry weight under greenhouse and seed production in the field. The results showed that the isolate PHYB1 as a formulation gave the highest impact in the root dry weight (0.28 g/plant), followed by PHYB9 (0.22 g/plant), with insignificant difference between them. PHYB9 suspension also provided the highest seed production (27.97 g/plant), whereas PHYB9 as a formulation gave the lowest (24.08 g/plant). Studies on the interaction between Bacillus spp. on F. camptoceras by scanning electron microscope (SEM) revealed that both caused a complete mycoparasitism on the fungal growth. The bacterial growth was seen to adhere and colonize the hyphae, resulting in hyphal tissue maceration. Therefore, the use of both isolates of Bacillus spp. to control root rot disease of black cumin under greenhouse and field conditions can be recommended.


Author(s):  
Shankar Lal Yadav ◽  
R. P. Ghasolia ◽  
Jitendra Sharma

Background: Root rot disease of fenugreek caused by Rhizoctonia solani has become a severe menace to the growers of Rajasthan as well as India. This pathogen survives in soil, causes damping off and root rot symptoms and responsible nearly for 50 per cent disease incidence and yield losses. Methods: During 2016-17 to 2017-18 cropping seasons, this study was carried out with the aim to manage the disease by means of using six fungicides including newer formulations (hexaconazole and tebuconazole + trifloxystrobin) under in vitro and field conditions. Result: The result of in vitro study with tebuconazole + trifloxystrobin was found to be most fungitoxic and inhibited mycelial growth cent per cent at 200 and 500 ppm concentrations. Seed treatment with tebuconazole + trifloxystrobin (@ 0.2%) was found highly effective in reducing disease incidence (83.12%) and in increasing seed yield (84.71%) under field conditions. Thus, it can be concluded that the use of newer combined formulation as seed treatment before sowing provide us alternative source to manage root rot disease of fenugreek.


2013 ◽  
Vol 53 (3) ◽  
pp. 295-300 ◽  
Author(s):  
Nashwa Atef Sallam ◽  
Shaimaa Nagy Riad ◽  
Mohamed Samy Mohamed ◽  
Ahmed Seef El-eslam

Abstract The aim of this study was to evaluate the different carrier formulations of antagonistic bacteria on incidence of root rot disease of cantaloupe. Twenty-seven isolates of bacteria isolated from rizosphere cantaloupe plants (collected from different localities of the Assiut Governorate, Egypt) were tested in vitro against the growth of Fusarium solani. The tested isolates exhibited varied percentages of mycelial inhibition of F. solani. The highly antagonistic bacteria isolates were identified as Bacillus subtilis, Bacillus cereus, and Pseudomonas fluorescens. The effect of talc based powder and wood flour as various carrier formulations of antagonistic bacteria were tested on incidence of cantaloupe root rot disease in greenhouse and field experiments. All tested carrier formulations of antagonistic bacteria significantly decreased the disease index percentage (p > 0.05) of root rot disease compared with the control, in greenhouse or in field experiments. Application of the wood flour formulation to the infested soil at the time of planting, gave the lowest disease (21.75%) index percentage compared to an application fifteen days before planting (26.83%). The reverse effect occurred in the case of the talc based powder formulation application. In field experiments, during the two growing seasons of 2009 and 2010, wood flour formulation gave the same effect in the reduction of the disease index when added before planting or at the time of planting to soil infested with the pathogen. However, application of the talc formulation at the time of planting showed the least disease index compared to when it was applied fifteen days before planting. In general, wood flour formulation significantly decreased the disease index when compared with the talc formulation. In all the formulations, a number of viable colonies of bioagents were decreased gradually by prolonging the storage time at 4°C. Storage time was prolonged up to five months. But in the case of B. subtilis on talc and B. cereus on wood flour formulations, storage time needed to be prolonged up to seven months


Sign in / Sign up

Export Citation Format

Share Document