scholarly journals COMPUTATIONAL INVESTIGATION OF A4-GRAPHS FOR CERTAIN LEECH LATTICE GROUPS

2021 ◽  
Vol 03 (03) ◽  
pp. 51-57
Author(s):  
Asmaa Jaafar OUDAH ◽  
Ali Abd AUBAD

In the case of a finite simple group , and -conjugacy class of element of order 3, The A4-graph is define as simple graph denoted by A4 has as vertex set and are adjacent if and only if x≠y and xy-1 = yx-1.We aim to investigate computationally the structure of theA4 when Leech Lattice groups.

2020 ◽  
Vol 16 (3) ◽  
pp. 297-299
Author(s):  
Athirah Zulkarnain ◽  
Nor Haniza Sarmin ◽  
Hazzirah Izzati Mat Hassim

A graph is formed by a pair of vertices and edges. It can be related to groups by using the groups’ properties for its vertices and edges. The set of vertices of the graph comprises the elements or sets from the group while the set of edges of the graph is the properties and condition for the graph. A conjugacy class of an element  is the set of elements that are conjugated with . Any element of a group , labelled as , is conjugated to  if it satisfies  for some elements  in  with its inverse . A conjugacy class graph of a group   is defined when its vertex set is the set of non-central conjugacy classes of  . Two distinct vertices   and   are connected by an edge if and only if their cardinalities are not co-prime, which means that the order of the conjugacy classes of  and  have common factors. Meanwhile, a simple graph is the graph that contains no loop and no multiple edges. A complete graph is a simple graph in which every pair of distinct vertices is adjacent. Moreover, a  -group is the group with prime power order. In this paper, the conjugacy class graphs for some non-abelian 3-groups are determined by using the group’s presentations and the definition of conjugacy class graph. There are two classifications of the non-abelian 3-groups which are used in this research. In addition, some properties of the conjugacy class graph such as the chromatic number, the dominating number, and the diameter are computed. A chromatic number is the minimum number of vertices that have the same colours where the adjacent vertices have distinct colours. Besides, a dominating number is the minimum number of vertices that is required to connect all the vertices while a diameter is the longest path between any two vertices. As a result of this research, the conjugacy class graphs of these groups are found to be complete graphs with chromatic number, dominating number and diameter that are equal to eight, one and one, respectively.


2013 ◽  
Vol 209 ◽  
pp. 35-109 ◽  
Author(s):  
Timothy C. Burness ◽  
Simon Guest

AbstractLet G be a finite group, and let k be a nonnegative integer. We say that G has uniform spread k if there exists a fixed conjugacy class C in G with the property that for any k nontrivial elements x1,…,xk in G there exists y ∊ C such that G = ‹xi,y› for all i. Further, the exact uniform spread of G, denoted by u(G), is the largest k such that G has the uniform spread k property. By a theorem of Breuer, Guralnick, and Kantor, u(G) ≥ 2 for every finite simple group G. Here we consider the uniform spread of almost simple linear groups. Our main theorem states that if G = ‹PSLn (q),g› is almost simple, then u(G) ≥ 2 (unless G ≅ S6), and we determine precisely when u(G) tends to infinity as |G| tends to infinity.


10.37236/4298 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
John Ballantyne ◽  
Peter Rowley

For a group $G$ with $G$-conjugacy class of involutions $X$, the local fusion graph $\mathcal{F}(G,X)$ has $X$ as its vertex set, with distinct vertices $x$ and $y$ joined by an edge if, and only if, the product $xy$ has odd order. Here we show that, with only three possible exceptions, for all pairs $(G,X)$ with $G$ a sporadic simple group or the automorphism group of a sporadic simple group, $\mathcal{F}(G,X)$ has diameter $2$.


2021 ◽  
pp. 289-294
Author(s):  
Ali abd Obaid

     Let G be a finite group and X be a conjugacy class of order 3 in G. In this paper, we introduce a new type of graphs, namely A4-graph of  G, as a simple graph denoted by A4(G,X) which has X as a vertex set. Two vertices,  x and y, are adjacent if and only if  x≠y and  x y-1=      y x-1. General properties  of the A4-graph as well as the structure of A4(G,X) when G@ 3D4(2) will be studied.


Author(s):  
Saul D. Freedman

AbstractLet G be a non-abelian finite simple group. In addition, let $$\Delta _G$$ Δ G be the intersection graph of G, whose vertices are the proper non-trivial subgroups of G, with distinct subgroups joined by an edge if and only if they intersect non-trivially. We prove that the diameter of $$\Delta _G$$ Δ G has a tight upper bound of 5, thereby resolving a question posed by Shen (Czechoslov Math J 60(4):945–950, 2010). Furthermore, a diameter of 5 is achieved only by the baby monster group and certain unitary groups of odd prime dimension.


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


2019 ◽  
Vol 12 (05) ◽  
pp. 1950081
Author(s):  
M. Jahandideh ◽  
R. Modabernia ◽  
S. Shokrolahi

Let [Formula: see text] be a non-abelian finite group and [Formula: see text] be the center of [Formula: see text]. The non-commuting graph, [Formula: see text], associated to [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices [Formula: see text] are adjacent if and only if [Formula: see text]. We conjecture that if [Formula: see text] is an almost simple group and [Formula: see text] is a non-abelian finite group such that [Formula: see text], then [Formula: see text]. Among other results, we prove that if [Formula: see text] is a certain almost simple group and [Formula: see text] is a non-abelian group with isomorphic non-commuting graphs, then [Formula: see text].


Author(s):  
Qun Liu ◽  
Jiabao Liu

Let G[F,Vk, Huv] be the graph with k pockets, where F is a simple graph of order n ≥ 1,Vk= {v1,v2,··· ,vk} is a subset of the vertex set of F and Hvis a simple graph of order m ≥ 2,v is a specified vertex of Hv. Also let G[F,Ek, Huv] be the graph with k edge pockets, where F is a simple graph of order n ≥ 2, Ek= {e1,e2,···ek} is a subset of the edge set of F and Huvis a simple graph of order m ≥ 3, uv is a specified edge of Huvsuch that Huv− u is isomorphic to Huv− v. In this paper, we derive closed-form formulas for resistance distance and Kirchhoff index of G[F,Vk, Hv] and G[F,Ek, Huv] in terms of the resistance distance and Kirchhoff index F, Hv and F, Huv, respectively.


Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.


Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .


Sign in / Sign up

Export Citation Format

Share Document