scholarly journals INVESTIGATION OF THE NONLINEAR FLUTTER OF VISCOELASTIC PLATES IN A SUPERSONIC FLOW

2014 ◽  
pp. 42-45
Author(s):  
Bakhtiyar Khudayarov

In this paper the flutter of nonlinear viscoelastic plates in a supersonic flow is investigated. The basic direction of work is consisted in taking into account of viscoelastic material’s properties at supersonic speeds. Quasi-steady aerodynamic panel loadings are determined using piston theory. The vibration equations relatively of deflection are described by Integrо-differential equations in partial derivatives. The plate nonlinear partial integro-differential equation is transformed info a set of nonlinear ordinary IDE through a Bubnov-Galerkin’s approach. The resulting system of IDE is solved through the Badalov-Eshmatov integration method. Critical speeds for plate flutter are defined.

Author(s):  
B. A. Khudayarov

In this work is investigated the flutter of viscoelastic sandwich plate streamlined by gas current. The basic direction of work is consisted in taking into account of viscous-elastic material’s properties at supersonic speeds. The vibration equations relatively of deflection are described by Integro-Differential Equations (IDE) in partial derivatives. By Bubnov-Galerkin methods reduced the problems to investigation of system of ordinary IDE. The IDE are solved by numerical method, which based on using of quadrature formula. Critical speeds for sandwich plate flutter are defined.


Author(s):  
Abdul Khaleq O. Al-Jubory ◽  
Shaymaa Hussain Salih

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Mohammad Hossein Daliri Birjandi ◽  
Jafar Saberi-Nadjafi ◽  
Asghar Ghorbani

An efficient iteration method is introduced and used for solving a type of system of nonlinear Volterra integro-differential equations. The scheme is based on a combination of the spectral collocation technique and the parametric iteration method. This method is easy to implement and requires no tedious computational work. Some numerical examples are presented to show the validity and efficiency of the proposed method in comparison with the corresponding exact solutions.


2004 ◽  
Vol 120 ◽  
pp. 85-91
Author(s):  
T. Reti

Based on the investigation of additive kinetic differential equations it is shown that the concept of the traditional isokinetic hypothesis defined by Christian can be easily generalized. By introducing the notion of the weakly isokinetic process, it is verified that the extended isokinetic model can be expressed in terms of an integro-differential equation. A special property of this integro-differential equation is that its right-hand side includes such state-parameters, which are determined by the whole temperature history (i.e. each state parameter is a functional of the time-temperature function, or any other selected state functions).


2018 ◽  
pp. 28-36
Author(s):  
Dauylbayev M. ◽  
Atakhan N. ◽  
Mirzakulova A.E.

In this article we constructed an asymptotic expansion of the solution undivided boundary value problem for singularly perturbed integro-differential equations with an initial jump phenomenon m – th order. We obtain the theorem about estimation of the remainder term’s asymptotic with any degree of accuracy in the smallparameter.


2019 ◽  
Vol 8 (3) ◽  
pp. 96
Author(s):  
Samir H. Abbas ◽  
Younis M. Younis

The aim of this paper is studying the existence and uniqueness solution of integro- differential equations by using Successive approximations method of picard. The results of written program in Mat-Lab show that the method is very interested and efficient with comparison the exact solution for solving of integro-differential equation.


Author(s):  
Albina Kuandykovna Ilyasova ◽  
Yuliia Vladimirovna Bulycheva

The problems of mathematical modeling lead to the necessity to create computational algorithms directly related to finding solutions of differential equations with partial derivatives in explicit form. In this study, explicit solutions are original tests for approximate methods that reflect the essence of the general solution. Each explicit solution of the differential equation has great importance as an accurate representation of the physical phenomenon under study within the framework of this model, as an analysis of the verification of numerical methods, as a theoretical basis for further modeling of the researched process. There have been considered aspects of the application of mathematical modeling to the study of oscillatory processes. Methods of reducing the solution of differential equations to an explicit form are proposed. Solution is given through functions of real arguments. The possible field of application is the study of wave processes. There is being considered the problem of building a variety of explicit solutions of the nonlinear third-order differential equation with partial derivatives with two boundary singular planes in space and second-order equation of general form with hyper-singular lines in the plane. On the basis of the developed method there has been proved the uniqueness of the obtained integral representations, and the boundary value problem of Cauchy type is posed and solved. The results are formulated in the form of theorems.


Author(s):  
KALIMUTHU KALIRAJ ◽  
E. Thilakraj ◽  
Ravichandran C ◽  
Kottakkaran Nisar

In this work, we analyse the controllability for certain classes of impulsive integro - differential equations(IIDE) of fractional order via Atangana Baleanu derivative involving finite delay with initial and nonlocal conditions using Banach fixed point theorem.


YMER Digital ◽  
2021 ◽  
Vol 20 (11) ◽  
pp. 37-46
Author(s):  
Vishant Shah ◽  

In this manuscript, we consider a nonlinear system governed by Hilfer fractional integro-differential equations in a Banach space. Using the concept of operator semigroup and Gronwall’s inequality, we have established the trajectory controllability of the integro-differential equation with local and non-local conditions. Finally, we have given an example to illustrate the application of the derived results


2021 ◽  
Vol 26 (1) ◽  
pp. 34-54
Author(s):  
Elmira A. Bakirova ◽  
Anar T. Assanova ◽  
Zhazira M. Kadirbayeva

The article proposes a numerically approximate method for solving a boundary value problem for an integro-differential equation with a parameter and considers its convergence, stability, and accuracy. The integro-differential equation with a parameter is approximated by a loaded differential equation with a parameter. A new general solution to the loaded differential equation with a parameter is introduced and its properties are described. The solvability of the boundary value problem for the loaded differential equation with a parameter is reduced to the solvability of a system of linear algebraic equations with respect to arbitrary vectors of the introduced general solution. The coefficients and the right-hand sides of the system are compiled through solutions of the Cauchy problems for ordinary differential equations. Algorithms are proposed for solving the boundary value problem for the loaded differential equation with a parameter. The relationship between the qualitative properties of the initial and approximate problems is established, and estimates of the differences between their solutions are given.


Sign in / Sign up

Export Citation Format

Share Document