scholarly journals FORMING EVOLUTIONARY DESIGN OF NEURAL NETWORKS WITH DIFFERENT NODES

2014 ◽  
pp. 16-23
Author(s):  
Eva Volna

Evolution in artificial neural networks (e.g. neuroevolution) searches through the space of behaviours for a network that performs well at a given task. Here is presented a neuroevolution system evolving populations of neurons that are combined to form the fully connected multilayer feedforward neural network with fixed architecture. In this article, the transfer function has been shown to be an important part of architecture of the artificial neural network and have significant impact on an artificial neural network’s performance. In order to test the efficiency of described method, we applied it to the pattern recognition problem and to the alphabet coding problem.

2018 ◽  
Vol 7 (2.13) ◽  
pp. 402
Author(s):  
Y Yusmartato ◽  
Zulkarnain Lubis ◽  
Solly Arza ◽  
Zulfadli Pelawi ◽  
A Armansah ◽  
...  

Lockers are one of the facilities that people use to store stuff. Artificial neural networks are computational systems where architecture and operations are inspired by the knowledge of biological neurons in the brain, which is one of the artificial representations of the human brain that always tries to stimulate the learning process of the human brain. One of the utilization of artificial neural network is for pattern recognition. The face of a person must be different but sometimes has a shape similar to the face of others, because the facial pattern is a good pattern to try to be recognized by using artificial neural networks. Pattern recognition on artificial neural network can be done by back propagation method. Back propagation method consists of input layer, hidden layer and output layer.  


Author(s):  
Paolo Massimo Buscema ◽  
William J Tastle

Data sets collected independently using the same variables can be compared using a new artificial neural network called Artificial neural network What If Theory, AWIT. Given a data set that is deemed the standard reference for some object, i.e. a flower, industry, disease, or galaxy, other data sets can be compared against it to identify its proximity to the standard. Thus, data that might not lend itself well to traditional methods of analysis could identify new perspectives or views of the data and thus, potentially new perceptions of novel and innovative solutions. This method comes out of the field of artificial intelligence, particularly artificial neural networks, and utilizes both machine learning and pattern recognition to display an innovative analysis.


2019 ◽  
Vol 3 (1) ◽  
pp. 7
Author(s):  
Muhammad Jurnalies Habibie

Technology nowadays is starting to go very fast, so that all people can use it. Toxic plants are very dangerous if consumed. Therefore to avoid undesirable events, an introduction to the community is needed to find out which plants are poisonous. Plants have many different types to recognize poisonous plants can be seen from the recognition of leaf patterns in these plants. For this reason, in order to determine the use of Learning Vector Quantification artificial neural networks. In this study, the use of input photos obtained from the camera. Photos will be processed later to extract the characteristics. Next, the process of pattern recognition can get the features in the photo. So that later it gets its characteristics. then the classification process uses the Learning Vector Quantification artificial neural network method. This research was conducted to be able to distinguish poisonous plants from those that are not. Which later the data is collected for grouping in accordance with the same data, so that information can be set about the plant.


Author(s):  
Paolo Massimo Buscema ◽  
William J. Tastle

Data sets collected independently using the same variables can be compared using a new artificial neural network called Artificial neural network What If Theory, AWIT. Given a data set that is deemed the standard reference for some object, i.e. a flower, industry, disease, or galaxy, other data sets can be compared against it to identify its proximity to the standard. Thus, data that might not lend itself well to traditional methods of analysis could identify new perspectives or views of the data and thus, potentially new perceptions of novel and innovative solutions. This method comes out of the field of artificial intelligence, particularly artificial neural networks, and utilizes both machine learning and pattern recognition to display an innovative analysis.


2020 ◽  
Vol 15 ◽  
Author(s):  
Elham Shamsara ◽  
Sara Saffar Soflaei ◽  
Mohammad Tajfard ◽  
Ivan Yamshchikov ◽  
Habibollah Esmaili ◽  
...  

Background: Coronary artery disease (CAD) is an important cause of mortality and morbidity globally. Objective : The early prediction of the CAD would be valuable in identifying individuals at risk, and in focusing resources on its prevention. In this paper, we aimed to establish a diagnostic model to predict CAD by using three approaches of ANN (pattern recognition-ANN, LVQ-ANN, and competitive ANN). Methods: One promising method for early prediction of disease based on risk factors is machine learning. Among different machine learning algorithms, the artificial neural network (ANN) algo-rithms have been applied widely in medicine and a variety of real-world classifications. ANN is a non-linear computational model, that is inspired by the human brain to analyze and process complex datasets. Results: Different methods of ANN that are investigated in this paper indicates in both pattern recognition ANN and LVQ-ANN methods, the predictions of Angiography+ class have high accuracy. Moreover, in CNN the correlations between the individuals in cluster ”c” with the class of Angiography+ is strongly high. This accuracy indicates the significant difference among some of the input features in Angiography+ class and the other two output classes. A comparison among the chosen weights in these three methods in separating control class and Angiography+ shows that hs-CRP, FSG, and WBC are the most substantial excitatory weights in recognizing the Angiography+ individuals although, HDL-C and MCH are determined as inhibitory weights. Furthermore, the effect of decomposition of a multi-class problem to a set of binary classes and random sampling on the accuracy of the diagnostic model is investigated. Conclusion : This study confirms that pattern recognition-ANN had the most accuracy of performance among different methods of ANN. That’s due to the back-propagation procedure of the process in which the network classify input variables based on labeled classes. The results of binarization show that decomposition of the multi-class set to binary sets could achieve higher accuracy.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


Strabismus ◽  
2009 ◽  
Vol 17 (4) ◽  
pp. 131-138 ◽  
Author(s):  
Arvind Chandna ◽  
Anthony C. Fisher ◽  
Ian Cunningham ◽  
Deborah Stone ◽  
Maureen Mitchell

Sign in / Sign up

Export Citation Format

Share Document