scholarly journals Cloud Computing: A Survey

Author(s):  
L. Arockiam ◽  
S. Monikandan ◽  
G. Parthasarathy

Cloud computing provides huge computing services to the business for improving the organizational growth. Basic requirement needed for this technology is Internet but provides higher capability when compared to the Internet. Cloud computing is a combination of computation, software, data access and also provides storage services. In Cloud, storage of data and the location of stored data are not known to the user. Cloud computing adopts the concept of virtualization, service oriented architecture, autonomic, and utility computing. The cloud has more advantages and easy to implement with any business logics. Cloud delivers services from different data sources and servers located on different geographical location but the user gets single point of view from the cloud service. This paper presents the survey on cloud computing, it includes cloud architecture, different models of deployment, and characteristics of Clouds. Cloud computing saves time, money and effort. The nature of cloud computing and their dependence on broad band internet might pose some serious issues for cloud provider and cloud users. This paper also describes some of the issues and challenges related to the cloud computing. Finally, the paper presents an observation study and suggests where to apply the cloud and where not to.

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2664 ◽  
Author(s):  
Luis Belem Pacheco ◽  
Eduardo Pelinson Alchieri ◽  
Priscila Mendez Barreto

The use of Internet of Things (IoT) is rapidly growing and a huge amount of data is being generated by IoT devices. Cloud computing is a natural candidate to handle this data since it has enough power and capacity to process, store and control data access. Moreover, this approach brings several benefits to the IoT, such as the aggregation of all IoT data in a common place and the use of cloud services to consume this data and provide useful applications. However, enforcing user privacy when sending sensitive information to the cloud is a challenge. This work presents and evaluates an architecture to provide privacy in the integration of IoT and cloud computing. The proposed architecture, called PROTeCt—Privacy aRquitecture for integratiOn of internet of Things and Cloud computing, improves user privacy by implementing privacy enforcement at the IoT devices instead of at the gateway, as is usually done. Consequently, the proposed approach improves both system security and fault tolerance, since it removes the single point of failure (gateway). The proposed architecture is evaluated through an analytical analysis and simulations with severely constrained devices, where delay and energy consumption are evaluated and compared to other architectures. The obtained results show the practical feasibility of the proposed solutions and demonstrate that the overheads introduced in the IoT devices are worthwhile considering the increased level of privacy and security.


Author(s):  
Вячеслав Вікторович Фролов

The article is devoted to the analysis of modern approaches that ensure the security of cloud services. Since cloud computing is one of the fastest growing areas among information technology, it is extremely important to ensure the safety and reliability of processes occurring in the clouds and to secure the interaction between the client and the provider of cloud services. Given that fears about data loss and their compromise are one of the main reasons that some companies do not transfer their calculations to the clouds. The object of research and analysis of this work are cloud services, which are provided by various cloud service providers. The aim of the study of this work is to compare existing approaches that provide information security for cloud services, as well as offer a new approach based on the principle of diversity. There are many approaches that ensure their safety, using both traditional and cloud-specific. The multi-cloud approach is one of the most promising strategies for improving reliability by reserving cloud resources on the servers of various cloud service providers. It is shown that it is necessary to use diversity to ensure the reliability and safety of critical system components. The principle of diversity is to use a unique version of each resource thanks to a special combination of a cloud computing provider, the geographical location of data centers, cloud service presentation models, and cloud infrastructure deployment models. The differences between cloud providers and which combination of services are preferable to others in terms of productivity are discussed in detail. In addition, best practices for securing cloud resources are reviewed. As a result, this paper concludes that there is a problem of insufficient security and reliability of cloud computing and how to reduce threats in order to avoid a common cause failure and, as a result, loss of confidential data or system downtime using diversity of cloud services.


2022 ◽  
Vol 14 (2) ◽  
pp. 398
Author(s):  
Pieter Kempeneers ◽  
Tomas Kliment ◽  
Luca Marletta ◽  
Pierre Soille

This paper is on the optimization of computing resources to process geospatial image data in a cloud computing infrastructure. Parallelization was tested by combining two different strategies: image tiling and multi-threading. The objective here was to get insight on the optimal use of available processing resources in order to minimize the processing time. Maximum speedup was obtained when combining tiling and multi-threading techniques. Both techniques are complementary, but a trade-off also exists. Speedup is improved with tiling, as parts of the image can run in parallel. But reading part of the image introduces an overhead and increases the relative part of the program that can only run in serial. This limits speedup that can be achieved via multi-threading. The optimal strategy of tiling and multi-threading that maximizes speedup depends on the scale of the application (global or local processing area), the implementation of the algorithm (processing libraries), and on the available computing resources (amount of memory and cores). A medium-sized virtual server that has been obtained from a cloud service provider has rather limited computing resources. Tiling will not only improve speedup but can be necessary to reduce the memory footprint. However, a tiling scheme with many small tiles increases overhead and can introduce extra latency due to queued tiles that are waiting to be processed. In a high-throughput computing cluster with hundreds of physical processing cores, more tiles can be processed in parallel, and the optimal strategy will be different. A quantitative assessment of the speedup was performed in this study, based on a number of experiments for different computing environments. The potential and limitations of parallel processing by tiling and multi-threading were hereby assessed. Experiments were based on an implementation that relies on an application programming interface (API) abstracting any platform-specific details, such as those related to data access.


2013 ◽  
pp. 814-834
Author(s):  
Hassan Takabi ◽  
James B.D. Joshi

Cloud computing paradigm is still an evolving paradigm but has recently gained tremendous momentum due to its potential for significant cost reduction and increased operating efficiencies in computing. However, its unique aspects exacerbate security and privacy challenges that pose as the key roadblock to its fast adoption. Cloud computing has already become very popular, and practitioners need to provide security mechanisms to ensure its secure adoption. In this chapter, the authors discuss access control systems and policy management in cloud computing environments. The cloud computing environments may not allow use of a single access control system, single policy language, or single management tool for the various cloud services that it offers. Currently, users must use diverse access control solutions available for each cloud service provider to secure data. Access control policies may be composed in incompatible ways because of diverse policy languages that are maintained separately at every cloud provider. Heterogeneity and distribution of these policies pose problems in managing access policy rules for a cloud environment. In this chapter, the authors discuss challenges of policy management and introduce a cloud based policy management framework that is designed to give users a unified control point for managing access policies to control access to their resources no matter where they are stored.


2021 ◽  
Vol 40 (2) ◽  
pp. 308-320
Author(s):  
S.A. Akinboro ◽  
U.J. Asanga ◽  
M.O. Abass

Data stored in the cloud are susceptible to an array of threats from hackers. This is because threats, hackers and unauthorized access are not supported by the cloud service providers as implied. This study improves user privacy in the cloud system, using privacy with non-trusted provider (PNTP) on software and platform as a service model. The subscribers encrypt the data using user’s personal Advanced Encryption Standard (AES) symmetric key algorithm and send the encrypted data to the storage pool of the Cloud Service Provider (CSP) via a secure socket layer. The AES performs a second encryption on the data sent to the cloud and generates for the subscriber a key that will be used for decryption of previously stored data. The encryption and decryption keys are managed by the key server and have been hardcoded into the PNTP system. The model was simulated using the Stanford University multimedia dataset and benchmarked with a Privacy with Trusted cloud Provider (PTP) model using encryption time, decryption time and efficiency (brute force hacking) as parameters. Results showed that it took a longer time to access the user files in PNTP than in the PTP system. The brute force hacking took a longer time (almost double) to access data stored on the PNTP system. This will give subscribers a high level of control over their data and increase the adoption of cloud computing by businesses and organizations with highly sensitive information.


2020 ◽  
Author(s):  
Dinesh Arpitha R ◽  
Sai Shobha R

Cloud computing is the computing technology which provides resources like software, hardware, services over the internet. Cloud computing provides computation, software, data access, and storage services that do not require end- user knowledge of the physical location and configuration of the system that delivers the services. Cloud computing enables the user and organizations to store their data remotely and enjoy good quality applications on the demand without having any burden associated with local hardware resources and software managements but it possesses a new security risk towards correctness of data stored at cloud. The data storage in the cloud has been a promising issue in these days. This is due to the fact that the users are storing their valuable data and information in the cloud. The users should trust the cloud service providers to provide security for their data. Cloud storage services avoid the cost storage services avoids the cost expensive on software, personnel maintains and provides better performance less storage cost and scalability, cloud services through internet which increase their exposure to storage security vulnerabilities however security is one of the major drawbacks that preventing large organizations to enter into cloud computing environment. This work surveyed on several storage techniques and this advantage and its drawbacks.


2014 ◽  
Vol 4 (1) ◽  
pp. 50-62 ◽  
Author(s):  
Sudhansu Shekhar Patra ◽  
R. K. Barik

Cloud computing has recently received considerable attention, as a promising approach for delivering Information and Communication Technologies (ICT) services as a utility. In the process of providing these services it is necessary to improve the utilization of data centre resources which are operating in most dynamic workload environments. Datacenters are integral parts of cloud computing. In the datacenter generally hundreds and thousands of virtual servers run at any instance of time, hosting many tasks and at the same time the cloud system keeps receiving the batches of task requests. It provides services and computing through the networks. Service Oriented Architecture (SOA) and agent frameworks renders tools for developing distributed and multi agent systems which can be used for the administration of cloud computing environments which supports the above characteristics. This paper presents a SOQM (Service Oriented QoS Assured and Multi Agent Cloud Computing) architecture which supports QoS assured cloud service provision and request. Biomedical and geospatial data on cloud can be analyzed through SOQM and has allowed the efficient management of the allocation of resources to the different system agents. It has proposed a finite heterogeneous multiple vm model which are dynamically allocated depending on the request from biomedical and geospatial stakeholders.


2013 ◽  
pp. 266-290 ◽  
Author(s):  
Jon Rav Gagan Shende

In today’s dynamic information technology system, one area of tremendous focus and recent growth has been that of the cloud-computing model in its various offerings. With this growth, however, come new challenges within the realms of e-discovery and digital forensics, as we traditionally know it. The rapid growth of cloud-computing services and the rate of acceptance and use by consumers are on the rise. Conversely, both legitimate and illegitimate activates can leverage the resources of the cloud to execute their operations. With the challenges growing to combat computer crime that utilizes the cloud ecosystem and the ease of which a criminal activity may be hidden using a cloud service, it is imperative that a cloud provider dedicate time, training, budget, and other resources to provide the facility for forensic investigators as well as law enforcement to combat this threat. The Cloud-Forensics-as-a-Service (FRaaS) model introduced later in this chapter can provide a comprehensive cloud forensics solution for creating a repeatable system. Such a system could be implemented as a standard forensics operational model for deployment within the cloud ecosystem regardless of environments and client service lines.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
K. V. Pradeep ◽  
V. Vijayakumar ◽  
V. Subramaniyaswamy

Cloud computing is a platform to share the data and resources used among various organizations, but the survey shows that there is always a security threat. Security is an important aspect of cloud computing. Hence, the responsibility underlines to the cloud service providers for providing security as the quality of service. However, cloud computing has many challenges in security that have not yet been addressed well. The data accessed or shared through any devices from the cloud environment are not safe because they are likely to have various attacks like Identity Access Management (IAM), hijacking an account or a service either by internal/external intruders. The cryptography places a major role to secure the data within the cloud environment. Therefore, there is a need for standard encryption/decryption mechanism to protect the data stored in the cloud, in which key is the mandatory element. Every cloud provider has its own security mechanisms to protect the key. The client cannot trust the service provider completely in spite of the fact that, at any instant, the provider has full access to both data and key. In this paper, we have proposed a new system which can prevent the exposure of the key as well as a framework for sharing a file that will ensure security (CIA) using asymmetric key and distributing it within the cloud environment using a trusted third party. We have compared RSA with ElGamal and Paillier in our proposed framework and found RSA gives a better result.


Cloud Computing is a trending technology. The main benefit is user will pay only for the resources which have been utilized in the cloud services. Data which are stored in cloud can be accessed by the people from anywhere in the world using internet connection. Because of difficulties in data access and lack of security, in the current database system people are moving to Cloud Service Provider (CSP). Network backup and recovery method are used in CSP so there is no data loss in case of hardware failure. In this paper, we planned an efficient model in cloud computing for data accessing which will reduce the search time of providing the public key of the data owner. Not only data storage and security, data access also plays an important role to consume less time. So, in this proposed system we are going to increase the time efficiency for the data accessing.


Sign in / Sign up

Export Citation Format

Share Document