scholarly journals TRANSMISSION NETWORK EXPANSION WITH TRANSMISSION LOADING RELIEF

Author(s):  
M.D. KHARDENVIS ◽  
DR.V.N. PANDE ◽  
PROF.V.M. JAPE

Transmission planning should seek to maintain or improve system security over time and facilitate robust wholesale power markets by improving transmission capacity for bulk power transfers across wide regions It includes finding the optimal plan for the electrical system expansion, it must specify the transmission lines and/or transformers that should be constructed so that the system to operate in an adequate way and in a specified planning horizon. In this paper a methodology is proposed for choosing the best transmission expansion plan using Transmission security based on contingency analysis. A procedure using sensitivity analysis is used to evaluate potential transmission connections and that provide the most improvements to overall system security .The methodology is applied to a six bus Garver system The result obtained with the proposed method are validated with the results reported in the earlier research papers.

2019 ◽  
Vol 43 (6) ◽  
pp. 573-595 ◽  
Author(s):  
Patrick Maloney ◽  
Ping Liu ◽  
Qingyu Xu ◽  
James D McCalley ◽  
Benjamin F Hobbs ◽  
...  

This article demonstrates the benefits of simultaneous cooptimization on a 312-bus network representation of the Western Interconnection power grid with emphasis on The Bonneville Power Administration’s operational area in the Pacific Northwest. While generation and transmission expansion planning has traditionally been solved sequentially, simultaneous cooptimization of both guarantees plans at least as cost effective as sequential approaches and better integrates high-quality remote resources like wind into power grids. For three scenarios with varied carbon and transmission costs, results indicate that (1) simultaneous cooptimization provides up to 6 billion dollars in net present value benefits over sequential optimization during the 50-year planning horizon, (2) cooptimization is more adept at tapping into superior remote resources like wind that the sequential approach has trouble identifying for low iterations, and (3) 10 iterations of sequential cooptimization only capture 75%–96% of the transmission benefits of simultaneous cooptimization.


Author(s):  
Farkhondeh Jabari ◽  
Heresh Seyedia ◽  
Sajad Najafi Ravadanegh ◽  
Behnam. Mohammadi Ivatloo

Increased electricity demands and economic operation of large power systems in a deregulated environment with a limited investment in transmission expansion planning causes interconnected power grids to be operated closer to their stability limits. Meanwhile, the loads uncertainty will affect the static and dynamic stabilities. Therefore, if there is no emergency corrective control in time, occurrence of wide area contingency may lead to the catastrophic cascading outages. Studies show that many wide area blackouts which led to massive economic losses may have been prevented by a fast feasible controlled islanding decision making. This chapter introduces a novel computationally efficient approach for separating of bulk power system into several stable sections following a severe disturbance. The splitting strategy reduces the large initial search space to an interface boundary network considering coherency of synchronous generators and network graph simplification. Then, a novel islanding scenario generator algorithm denoted as BEM (Backward Elimination Method) based on PMEAs (Primary Maximum Expansion Areas) has been applied to generate all proper islanding solutions in the simplified network graph. The PPF (Probabilistic Power Flow) based on Newton-Raphson method and Q-V modal analysis has been used to evaluate the steady-state stability of created islands in each generated scenario. BICA (Binary Imperialistic Competitive Algorithm) has then been applied to minimize total load-generation mismatch considering integrity, voltage permitted range and steady-state voltage stability constraints. The best solution has then been applied to split the entire power network. A novel stochastic contingency analysis of islands based on PSVI (Probability of Static Voltage Instability) using MCS (Monte Carlo Simulation) and k-PEM (k-Point Estimate Method) have been proposed to identify the critical PQ buses and severe contingencies. In these approaches, the ITM (Inverse Transform Method) has been used to model uncertain loads with normal probability distribution function in optimal islanded power system. The robustness, effectiveness and capability of the proposed approaches have been validated on the New England 39-bus standard power system.


SIMULATION ◽  
2020 ◽  
Vol 96 (7) ◽  
pp. 605-621
Author(s):  
Abdollah Ahmadi ◽  
Hani Mavalizadeh ◽  
Ali Esmaeel Nezhad ◽  
Pierluigi Siano ◽  
Heidar Ali Shayanfar ◽  
...  

This paper presents the application of information gap decision theory (IGDT) to deal with uncertainties associated with load forecasting in dynamic, environment constrained, coordinated generation and transmission expansion planning. Traditionally, the gaseous emissions are constrained over the whole system. Conventional methods cannot guarantee a practical expansion plan since huge emissions can still occur on some buses in the power system. This paper introduces a per-bus emission limit to avoid extreme emissions in highly populated areas. The effect of nodal emission limits is fully discussed and compared to a conventional method. The model is kept linear using the big M approach to decrease the model computational burden. Reliability is considered by limiting the estimated load not served in each year over the planning horizon. The cost of fuel transportation and fuel limits are considered in order to make the model more realistic and practical. The effectiveness of the proposed model is verified by implementation on Garver 6 bus, IEEE 30 bus, and 118 bus test systems.


2017 ◽  
Vol 7 (5) ◽  
pp. 1987-1995 ◽  
Author(s):  
K. Soleimani ◽  
J. Mazloum

The expansion of power transmission systems is an important part of the expansion of power systems that requires enormous investment costs. Since the construction of new transmission lines is very expensive, it is necessary to choose the most efficient expansion plan that ensures system security with a minimal number of new lines. In this paper, the role of Flexible AC Transmission System (FACTS) devices in the effective operation and expansion planning of transmission systems is examined. Effort was taken to implement a method based on sensitivity analysis to select the optimal number and location of FACTS devices, lines and other elements of the transmission system. Using this method, the transmission expansion plan for a 9 and a 39 bus power system was performed with and without the presence of FACTS with the use of DPL environment in Digsilent software 15.1. Results show that the use of these devices reduces the need for new transmission lines and minimizes the investment cost.


In power system studies the most important issue is Transmission Expansion Planning (TEP). The intend of TEP problem is to choose the placement as well as number of additional transmission lines, which are to be added to the existing system to suit growing demand in planning horizon. In this paper a new methodology for TEP is proposed, the presented Transmission planning is linked with generation cost, active power loss minimization by considering wind uncertainties. Firstly, the uncertainties involved in wind generation can be determined by using weigbull probability functions. Monte Carlo simulation study is able to be used to find the probability distribution functions of wind generation. Then, in TEP formulation the WTG uncertainties are considered. Particle swarm optimization (PSO) technique is used for solving the proposed single objective optimization problem. Simulation studies conducted on an IEEE 30 bus test system to certify effectiveness of the TEP problem with considering wind uncertainties.


2014 ◽  
Vol 15 (2) ◽  
pp. 121-128
Author(s):  
Jorge Hans Alayo

Abstract Existing transmission planning models consider basic aspects of the problem. In practice, a transmission utility needs to model other important details such as operation cost of the power system. In this article, a least cost transmission expansion model is proposed considering the operation cost in order to model the trade-off between building new transmission capacity and increasing the power system’s operation cost. The proposed model is transformed into a mixed integer linear programming problem using linearization techniques and solved with CPLEX. Finally, results of the model for the Garver test system and IEEE 24-bus test system are shown.


1986 ◽  
Vol 4 (2-3) ◽  
pp. 177-190
Author(s):  
Douglas C. Bauer

Current US electricity markets are showing improvement, reflecting improvement in the economy as a whole. However, we do have several concerns for the future. The risks which accompany new power plant construction have led the industry, as well as others, to seek out new alternatives. Canadian imports, cogeneration, and improved bulk power markets all have a role to play in future utility planning. But, I believe we must still retain the option of new central station generation. Current attempts in the US to remove capital formation incentives through tax reform, to prohibit construction work in progress in the rate base, and to exclude surplus capacity from cost recovery are examples of public policy decisions which we believe would be counterproductive to providing low cost, reliable power to consumers. Rather, we believe public policy should focus on providing the utility industry with the opportunities to make the best long-term economic decisions on behalf of its customers.


Sign in / Sign up

Export Citation Format

Share Document