scholarly journals Jackson network in a random environment: strong approximation

2020 ◽  
pp. 144-149
Author(s):  
Elena Bashtova ◽  
◽  
Elena Lenena ◽  

We consider a Jackson network with regenerative input flows in which every server is subject to a random environment influence generating breakdowns and repairs. They occur in accordance with two independent sequences of i.i.d. random variables. We establish a theorem on the strong approximation of the vector of queue lengths by a reflected Brownian motion in positive orthant.

2012 ◽  
Vol 49 (3) ◽  
pp. 883-887 ◽  
Author(s):  
Offer Kella

The goal is to identify the class of distributions to which the distribution of the maximum of a Lévy process with no negative jumps and negative mean (equivalently, the stationary distribution of the reflected process) belongs. An explicit new distributional identity is obtained for the case where the Lévy process is an independent sum of a Brownian motion and a general subordinator (nondecreasing Lévy process) in terms of a geometrically distributed sum of independent random variables. This generalizes both the distributional form of the standard Pollaczek-Khinchine formula for the stationary workload distribution in the M/G/1 queue and the exponential stationary distribution of a reflected Brownian motion.


2012 ◽  
Vol 49 (03) ◽  
pp. 883-887 ◽  
Author(s):  
Offer Kella

The goal is to identify the class of distributions to which the distribution of the maximum of a Lévy process with no negative jumps and negative mean (equivalently, the stationary distribution of the reflected process) belongs. An explicit new distributional identity is obtained for the case where the Lévy process is an independent sum of a Brownian motion and a general subordinator (nondecreasing Lévy process) in terms of a geometrically distributed sum of independent random variables. This generalizes both the distributional form of the standard Pollaczek-Khinchine formula for the stationary workload distribution in the M/G/1 queue and the exponential stationary distribution of a reflected Brownian motion.


2019 ◽  
Vol 20 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Hua Zhang

In this paper, we prove a moderate deviation principle for the multivalued stochastic differential equations whose proof are based on recently well-developed weak convergence approach. As an application, we obtain the moderate deviation principle for reflected Brownian motion.


1981 ◽  
Vol 41 (2) ◽  
pp. 345-361 ◽  
Author(s):  
J. Michael Harrison ◽  
Martin I. Reiman

1996 ◽  
Vol 28 (04) ◽  
pp. 1145-1176 ◽  
Author(s):  
Sid Browne ◽  
Ward Whitt

We derive optimal gambling and investment policies for cases in which the underlying stochastic process has parameter values that are unobserved random variables. For the objective of maximizing logarithmic utility when the underlying stochastic process is a simple random walk in a random environment, we show that a state-dependent control is optimal, which is a generalization of the celebrated Kelly strategy: the optimal strategy is to bet a fraction of current wealth equal to a linear function of the posterior mean increment. To approximate more general stochastic processes, we consider a continuous-time analog involving Brownian motion. To analyze the continuous-time problem, we study the diffusion limit of random walks in a random environment. We prove that they converge weakly to a Kiefer process, or tied-down Brownian sheet. We then find conditions under which the discrete-time process converges to a diffusion, and analyze the resulting process. We analyze in detail the case of the natural conjugate prior, where the success probability has a beta distribution, and show that the resulting limit diffusion can be viewed as a rescaled Brownian motion. These results allow explicit computation of the optimal control policies for the continuous-time gambling and investment problems without resorting to continuous-time stochastic-control procedures. Moreover they also allow an explicit quantitative evaluation of the financial value of randomness, the financial gain of perfect information and the financial cost of learning in the Bayesian problem.


Sign in / Sign up

Export Citation Format

Share Document