Discussion on Importance of Chemical Safety Design in Preventing Chemical Accidents

2021 ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Huyen Thi Thu Do ◽  
Tram Thi Bich Ly ◽  
Tho Tien Do

Abstract In this study, a combination of semi-quantitative risk assessment, composite indicator and fuzzy logic has been developed to identify industrial establishments and processes that represent potential environmental accidents associated with hazardous chemicals. The proposed method takes into consideration the root causes of risk probability of hazardous chemical accidents (HCAs), such as unsafe onsite storing and usage, inadequate operation training, poor safety management and analysis, equipment failure, and factors affected by the potential consequences of the accidents, including human health, water resources, and building and construction. These issues have been aggregated in a system of criteria and sub-criteria, demonstrated by a list of non-overlapping and exhaustive categorical terms. Semi-quantitative risk assessment is then applied to develop a framework for screening industrial establishments that exhibit potential HCAs. Fuzzy set theory with triangular fuzzy number deals with the uncertainty associated with the data input and reduces the influence of subjectivity and vagueness to the final results. The proposed method was tested among 77 industrial establishments located within the industrial zones of Ho Chi Minh City, Vietnam. Eighteen establishments were categorized as high HCA risk, 36 establishments were categorized as medium HCA risk, and 23 ones were of low HCA risk. The results are compatible with the practical chemical safety situation of the establishments and are consistent with expert evaluation.


Human Ecology ◽  
2017 ◽  
pp. 46-52 ◽  
Author(s):  
L. M. Sosedova ◽  
T. M. Filippova

2019 ◽  
Vol 485 (2) ◽  
pp. 229-233
Author(s):  
V. P. Kalyabina ◽  
E. N. Esimbekova ◽  
I. G. Torgashina ◽  
K. V. Kopylova ◽  
V. A. Kratasyuk

We formulated the principles of designing bioluminescent enzyme tests for assessing the quality of complex media which consist in providing the maximum sensitivity to potentially toxic chemicals at a minimal impact of uncontaminated complex media. The developed principles served as a basis for designing a new bioluminescent method for an integrated rapid assessment of chemical safety of fruits and vegetables which is based on using the luminescent bacterium enzymes (NAD(P)H:FMN oxidoreductase and luciferase) as a test system.


Sign in / Sign up

Export Citation Format

Share Document