scholarly journals Assessing Urban Forest Canopy Cover Using Airborne or Satellite Imagery

2008 ◽  
Vol 34 (6) ◽  
pp. 334-340
Author(s):  
Jeffrey Walton ◽  
David Nowak ◽  
Eric Greenfield

With the availability of many sources of imagery and various digital classification techniques, assessing urban forest canopy cover is readily accessible to most urban forest managers. Understanding the capability and limitations of various types of imagery and classification methods is essential to interpreting canopy cover values. An overview of several remote sensing techniques used to assess urban forest canopy cover is presented. A case study comparing canopy cover percentages for Syracuse, New York, U.S. interprets the multiple values developed using different methods. Most methods produce relatively similar results, but the estimate based on the National Land Cover Database is much lower.

2020 ◽  
Vol 12 (11) ◽  
pp. 1820
Author(s):  
Raoul Blackman ◽  
Fei Yuan

Urban forests provide ecosystem services; tree canopy cover is the basic quantification of ecosystem services. Ground assessment of the urban forest is limited; with continued refinement, remote sensing can become an essential tool for analyzing the urban forest. This study addresses three research questions that are essential for urban forest management using remote sensing: (1) Can object-based image analysis (OBIA) and non-image classification methods (such as random point-based evaluation) accurately determine urban canopy coverage using high-spatial-resolution aerial images? (2) Is it possible to assess the impact of natural disturbances in addition to other factors (such as urban development) on urban canopy changes in the classification map created by OBIA? (3) How can we use Light Detection and Ranging (LiDAR) data and technology to extract urban canopy metrics accurately and effectively? The urban forest canopy area and location within the City of St Peter, Minnesota (MN) boundary between 1938 and 2019 were defined using both OBIA and random-point-based methods with high-spatial-resolution aerial images. Impacts of natural disasters, such as the 1998 tornado and tree diseases, on the urban canopy cover area, were examined. Finally, LiDAR data was used to determine the height, density, crown area, diameter, and volume of the urban forest canopy. Both OBIA and random-point methods gave accurate results of canopy coverages. The OBIA is relatively more time-consuming and requires specialist knowledge, whereas the random-point-based method only shows the total coverage of the classes without locational information. Canopy change caused by tornado was discernible in the canopy OBIA-based classification maps while the change due to diseases was undetectable. To accurately exact urban canopy metrics besides tree locations, dense LiDAR point cloud data collected at the leaf-on season as well as algorithms or software developed specifically for urban forest analysis using LiDAR data are needed.


2018 ◽  
Vol 10 (9) ◽  
pp. 3308 ◽  
Author(s):  
Fabio Recanatesi ◽  
Chiara Giuliani ◽  
Maria Ripa

Climate change and human activities in particular are important causes of the possible variations in Mediterranean basin forest health conditions. Over the last decades, deciduous oak-forest mortality has been a recurrent problem in central and southern Italy. Despite the perception of increasingly visible damage in oak forests in drought sites, the role of various environmental factors in their decline is not completely clear. Among the modern methods of monitoring terrestrial ecosystems, remote sensing is of prime importance thanks to its ability to provide synoptic information on large areas with a high frequency of acquisition. This paper reports the preliminary results regarding a replicable and low cost monitoring tool planned to quantify forest health conditions based on the application of the Normalized Difference Vegetation Index (NDVI), using the diachronic images provided by the Sentinel-2 satellite. The study area is represented by a peri-urban forest of natural Mediterranean deciduous oaks, characterized by a high variability in the composition of the species and in the silvicultural structures. In order to monitor the health conditions of a specific forest canopy cover with remote sensing data, it is necessary to classify the forest canopy cover in advance to separate it from other species and from the Mediterranean scrub. This is due to the spatial distribution of vegetation and the high rate of biodiversity in the Mediterranean natural environment. To achieve this, Light Detection and Ranging (LiDAR) data, forest management data and field sampling data were analyzed. The main results of this research show a widespread decline in oak health conditions over the observed period (2015–2017). Specifically, for the studied area, thanks to the specific localization of the oak canopy cover, we detected a high potential concerning the Sentinel-2 data application in monitoring forest health conditions by NDVI application.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 433
Author(s):  
Xiaolan Huang ◽  
Weicheng Wu ◽  
Tingting Shen ◽  
Lifeng Xie ◽  
Yaozu Qin ◽  
...  

This research was focused on estimation of tree canopy cover (CC) by multiscale remote sensing in south China. The key aim is to establish the relationship between CC and woody NDVI (NDVIW) or to build a CC-NDVIW model taking northeast Jiangxi as an example. Based on field CC measurements, this research used Google Earth as a complementary source to measure CC. In total, 63 sample plots of CC were created, among which 45 were applied for modeling and the remaining 18 were employed for verification. In order to ascertain the ratio R of NDVIW to the satellite observed NDVI, a 20-year time-series MODIS NDVI dataset was utilized for decomposition to obtain the NDVIW component, and then the ratio R was calculated with the equation R = (NDVIW/NDVI) *100%, respectively, for forest (CC >60%), medium woodland (CC = 25–60%) and sparse woodland (CC 1–25%). Landsat TM and OLI images that had been orthorectified by the provider USGS were atmospherically corrected using the COST model and used to derive NDVIL. R was multiplied for the NDVIL image to extract the woody NDVI (NDVIWL) from Landsat data for each of these plots. The 45 plots of CC data were linearly fitted to the NDVIWL, and a model with CC = 103.843 NDVIW + 6.157 (R2 = 0.881) was obtained. This equation was applied to predict CC at the 18 verification plots and a good agreement was found (R2 = 0.897). This validated CC-NDVIW model was further applied to the woody NDVI of forest, medium woodland and sparse woodland derived from Landsat data for regional CC estimation. An independent group of 24 measured plots was utilized for validation of the results, and an accuracy of 83.0% was obtained. Thence, the developed model has high predictivity and is suitable for large-scale estimation of CC using high-resolution data.


2004 ◽  
Vol 38 (39) ◽  
pp. 6679-6685 ◽  
Author(s):  
B. Padma Kumari ◽  
A.L. Londhe ◽  
H.K. Trimbake ◽  
D.B. Jadhav

Sign in / Sign up

Export Citation Format

Share Document