scholarly journals Estimation of Optimum Moisture Content and Maximum Dry Unit Weight of Fine-Grained Soils using Numerical Methods

Author(s):  
Armand Augustin FONDJO ◽  
Elizabeth THERON ◽  
Richard P. RAY

Soil compaction is one of the basic engineering techniques, which is carried out to guarantee the stability of soils dependent on specified strength. Nonetheless, in large-scale construction projects, the estimation of compaction features required tremendous effort and time that can be saved utilizing empirical relationships at the initial phases. It becomes critical to develop models to predict the compaction features, namely the maximum dry unit weight (γdmax) and optimum water content (WOP). This article attempts to develop models to predict the γdmax and WOP of fine-grained clay soils. Geotechnical tests such as grain size distribution, Atterberg limits, specific gravity, and proctor compaction tests are performed to assess soil samples' physical and hyro-mechanical characteristics. Multivariate analysis is conducted using MINITAB 18 software to develop the predictive models. The validation process of developed models includes the determination coefficient, probability value (p-value), comparison of the predicted values with experimental values, comparison of the models proposed in this study with other existing models found in the recent literature, and employing a different soil data set. The predicted values obtained from the models proposed in this research project are more accurate than other models developed recently. The proposed models estimate the compaction features of fine-grained clay soils with acceptable precision. HIGHLIGHTS Soil compaction is one of the basic engineering techniques perform to guarantee the stability of soils dependent on specified strength In large-scale construction projects, the estimation of compaction parameters required tremendous effort and time that can be saved utilizing empirical relationships at the initial phases This study has developed semi-empirical models to predict the compaction parameters (maximum dry unit weight and optimum water content) of fine-grained soils GRAPHICAL ABSTRACT

2008 ◽  
Vol 45 (6) ◽  
pp. 877-887 ◽  
Author(s):  
Osman Sivrikaya ◽  
Ergun Togrol ◽  
Cafer Kayadelen

For successful designs of geotechnical structures, rational determination of the engineering properties of soils is an important process. In this context, compaction parameters, maximum dry unit weight (γdmax), and optimum water content (wopt) are required to be determined at various compaction energies. This paper proposes correlation equations that relate γdmax and wopt obtained from standard Proctor (SP) and modified Proctor (MP) tests to the index properties. To develop accurate relations, the data collected from the literature and the authors’ own database have been used. It has been found that while wopt has the best correlation with plastic limit (wp), γdmax can be estimated more accurately from wopt than it can from wp. In addition, the empirical methods including compaction energy (E) are described for estimating wopt and γdmax of fine-grained soils. The variables of the developed models for wopt and γdmax are wp, E, and wopt. It has been shown that the proposed correlations including the compaction energy will be useful for a preliminary design of a project where there is a financial constraint and limited time.


2011 ◽  
Vol 308-310 ◽  
pp. 1651-1655 ◽  
Author(s):  
Amin Chegenizadeh ◽  
Hamid Nikraz

Composite soils have been widely used in civil engineering applications, especially in slopes, embankment dam and landfills. This paper aims to investigate effect of fiber inclusion on compaction characteristic of composite soil (i.e. clay composite). A series of laboratory tests carried out to evaluate fiber effect on optimum water content and maximum dry unit weight of composite soils. Clay was selected as soil part of the composite and natural fiber was used as reinforcement. The fiber parameters differed from one test to another, as fiber length varied from 10 mm to 25mm and fiber content were selected as 0.1% and 0.3%. For each test, compaction curved derived and the results were compared. The results proved that inclusion of fiber affected compaction behaviour of samples so that increasing in fiber content and length caused increasing in Optimum Moisture Content (OMC) and slightly decreased maximum dry unit weight.


2011 ◽  
Vol 261-263 ◽  
pp. 964-968 ◽  
Author(s):  
Amin Chegenizadeh ◽  
Hamid Nikraz

Composite soils have been widely used in civil engineering applications, especially in slopes, embankment dam and landfills. This paper aims to investigate effect of fiber inclusion on compaction characteristic of composite soil (i.e. clay composite). A series of laboratory tests carried out to evaluate fiber effect on optimum water content and maximum dry unit weight of composite soils. Clay was selected as soil part of the composite and plastic fiber was used as reinforcement. The fiber parameters differed from one test to another, as fiber length varied from 10 mm to 35mm and fiber content were selected as 0.1% and 0.4%. For each test, compaction curved derived and the results were compared. The results proved that inclusion of fiber affected compaction behaviour of samples so that increasing in fiber content and length caused increasing in Optimum Moisture Content (OMC) and slightly decreased maximum dry unit weight.


2013 ◽  
Vol 652-654 ◽  
pp. 38-42
Author(s):  
Amin Chegenizadeh ◽  
Hamid Nikraz

Composite soils have been widely used in civil engineering applications, especially in slopes, embankment dam and landfills. This paper aims to investigate effect of fiber inclusion on compaction characteristic of composite soil (i.e. clay composite). A series of laboratory tests carried out to evaluate fiber effect on optimum water content and maximum dry unit weight of composite soils. Clay was selected as soil part of the composite and natural fiber was used as reinforcement. The fiber parameters differed from one test to another, as fiber length varied from 10 mm to 20mm and fiber content were selected as 0.1% and 0.25%. For each test, compaction curved derived and the results were compared. The results proved that inclusion of fiber affected compaction behaviour of samples so that increasing in fiber content and length caused increasing in Optimum Moisture Content (OMC) and slightly decreased maximum dry unit weight.


2012 ◽  
Vol 608-609 ◽  
pp. 1741-1745
Author(s):  
Amin Chegenizadeh ◽  
Hamid Nikraz

Composite soils have been extensively used in civil engineering applications, especially in slopes, embankment dam and landfills. This paper aims to investigate effect of paper reinforcement inclusion on compaction characteristic of composite soil (i.e. clay composite). A series of laboratory tests performed to assess reinforcement effect on optimum water content and maximum dry unit weight of composite soils. Clay was selected as soil part of the composite and paper was used as reinforcement. The paper reinforcement parameters differed from one test to another, as paper length varied from 15 mm to 40mm and paper content were selected as 5% and 10%. For each test, compaction curved derived and the results were compared. The results proved that inclusion of paper affected compaction behaviour of samples so that increasing in paper content and length caused increasing in Optimum Moisture Content (OMC) and slightly decreased maximum dry unit weight.


1990 ◽  
Vol 27 (4) ◽  
pp. 472-483 ◽  
Author(s):  
Harsha Wijeweera ◽  
Ramesh C. Joshi

Constant strain-rate (0.01/s) uniaxial compression-strength tests were conducted on more than 200 saturated samples of six fine-grained frozen soils at temperatures between −5 and −17 °C. Saturated soil samples containing total water contents between 15% and 105% were prepared using a consolidation apparatus specially designed for this purpose. The effect of dry unit weight, total water content, temperature, and soil type on the behavior of peak compressive strength was studied. Test results indicate the peak compressive strength of fine-grained soils is sensitive to changes in the dry unit weight and the total water content. The temperature dependence of the peak compressive strength is represented by a simple power law. An empirical formula has been developed to predict the peak compressive strength of fine-grained frozen soils at a particular temperature using index properties, specific surface area, particle-size distribution, and dry unit weight. A linear relationship exists between the peak compressive stress and the yield stress. Key words: peak compressive strength, yield stress, frozen soils, fine-grained soils, dry unit weight, failure strain, temperature, total water content, slurry consolidation.


2020 ◽  
Vol 17 (12) ◽  
pp. 1367-1378
Author(s):  
Prinya CHINDAPRASIRT ◽  
Apichit KAMPALA ◽  
Anukun ARNGBUNTA ◽  
Suksun HORPIBULSUK

Soil stratum in Khon Kaen province, located in Northeast of Thailand, is well-known as a wind-deposited fine-grained soil (i.e. silty sand and silty clay). It is normally called “Loess or Khon Kaen Loess”.  This soil in disturbed stage is usually extracted from the borrow pit and subsequently compacted for infrastructure applications. The compaction resulted in silty sand or silty clay aggregation with unpredictable properties. Although required for infrastructure design, studies on Khon Kaen Loess are limited. Thus, this research examines the compaction behavior and predicts soil parameters at various clay contents under a series of compaction energy on Khon Kaen Loess. The results showed that the maximum dry unit weights of samples could be related to the dry unit weight at plastic limit (PL), while the optimum water content (OWC) was correlated linearly with the PL. The samples with higher PL presented the higher OWC. In addition, the maximum dry unit weight and OWC of samples could be estimated using the developed equations validated with the other research results.


Sign in / Sign up

Export Citation Format

Share Document