compaction behaviour
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 20)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 1 ◽  
pp. 121-123
Author(s):  
Larissa Friedenberg ◽  
James Bean ◽  
Oliver Czaikowski ◽  
Uwe Düsterloh ◽  
Nina Müller-Hoeppe ◽  
...  

Abstract. In Germany, rock salt formations are possible host rock candidates for a repository for heat-emitting radioactive waste. The safety concept of a repository in salt bases on a multibarrier system consisting mainly of the geological barrier salt and geotechnical seals ensuring safe containment. Crushed salt will be used for backfilling of cavities and sealing measures in drifts and shafts due to its favourable properties and its easy availability (mined-off material). The creep of the rock salt leads to crushed salt compaction with time. Thereby, the crushed salts' porosity is reduced from the initial porosity of 30 %–40 % to a value comparable to the porosity of undisturbed rock salt (≤1 %). In such low porosity ranges, technical impermeability is assumed. The compaction behaviour of crushed salt is rather complex and involves several coupled THM processes (Kröhn et al., 2017; Hansen et al., 2014). It is influenced by internal properties like humidity and grain size distribution, as well as boundary conditions such as temperature, compaction rate or stress state. However, the current process understanding has some important gaps referring to the material behaviour, experimental database and numerical modelling. It needs to be extended and validated, especially in the low porosity range. The objective of the KOMPASS project was development of methods and strategies for the reduction of deficits in the prediction of crushed salt compaction leading to an improvement of the prognosis quality. Key results are as follows (KOMPASS Phase 1, 2020): selection of an easily available and permanently producible synthetic crushed salt mixture, acting as a reference material for generic investigations; development and proof of different techniques for producing pre-compacted samples for further investigations; establishment of a tool of microstructure investigation methods to demonstrate the comparability of grain structures of pre-compacted samples with in-situ compacted material for future investigations; execution of various laboratory experiments using pre-compacted samples, e.g. long-term creep tests which deliver reliable information about time- and stress-dependent compaction behaviour; development of a complex experimental investigation strategy to derive necessary model parameters considering individual functional dependencies. Its technical feasibility was successfully verified; benchmarking with various existing numerical models using datasets from three different triaxial long-term tests. The result was not entirely satisfactory; however, the number of influencing factors is small and further validation work has to be done. Overall, the KOMPASS project has made significant progress in the approaches to solving the outstanding question, building the basis for further investigations.


Author(s):  
C.J. Fordham ◽  
M.B. Dusseault ◽  
L. Rothenburg ◽  
D. Mraz
Keyword(s):  

2021 ◽  
Author(s):  
Alexandre Vivet ◽  
Eric Tossou ◽  
Florian Gehring ◽  
Olivier Mareschal

A model, based on the Van Wyk model, is developed to predict the compaction behaviour of stack sequence of dry fabric plies, and is used a set of 3 parameters (stiffness k, pressure sensitivity n and initial fibre ratio Vf0) with P = (k(Vf- Vf))n. The method originality is to construct the behaviour law of a complex stack sequence by the assembly of elementary behaviours. Elementary behaviours are identified using initial experimental compaction tests and are linked to the interaction of a fabric ply with its surrounding environment (another fabric ply or the surface of the compressive mould). This proposed modelling approach have been tested on various carbon, flax and carbon/flax hybrid stack sequence, and seems efficient to predict their compaction behaviour. Its validity is limited to the range of stack sequence of a reduced number of plies. With stack sequence made of numerous fabric plies, some new phenomena must be taken into account. In complement we proposed a method to decompose the compaction behavior curve into three stages (rigid body movement of the fabric plies, nesting of the plies, densification). This method is relevant to compare easily some compaction curves and to evaluate the internal strain state of a stack sequence.


Author(s):  
Jonathan P.-H. Belnoue ◽  
Mario A. Valverde ◽  
Maria Onoufriou ◽  
Xiaochuan (Ric) Sun ◽  
Dmitry S. Ivanov ◽  
...  

2021 ◽  
Author(s):  
Eszter Békési ◽  
Peter Fokker ◽  
Thibault Candela ◽  
János Szanyi ◽  
Jan-Diederik van Wees

<p>The long-term sustainable exploitation of geothermal resources requires cautious planning and regulation. Exploitation in excess of natural recharge can result in reservoir pressure decline, causing a decrease in production rates. Furthermore, such “overexploitation” of geothermal reservoirs may lead to compaction and land subsidence. Understanding of such phenomena is critical for the assessment of societal-environmental risks, but can also be used for optimization by constraining reservoir processes and properties.</p><p>Excessive thermal water volumes have been extracted from porous sedimentary rocks in the Hungarian part of the Pannonian Basin. Thermal water production in Hungary increased significantly from the early 70’s. Regional-scale overexploitation of geothermal reservoirs resulted in basin-scale pressure drop in the Upper Pannonian sediments, leading to compaction and ground subsidence.</p><p>We investigated surface deformation at the Szentes geothermal filed, SE Hungary, where the largest pressure decline occurred. We obtained data from the European Space Agency’s ERS and Envisat satellites to estimate the ground motions for the periods of 1992-2000 and 2002-2010. We applied inverse geomechanical modelling to understand the compaction behaviour of the reservoir system and to estimate the subsurface properties. We constrained the model parameters using the Ensemble Smoother with Multiple Data Assimilation, which allowed us to incorporate large amounts of surface movement observations in a computationally efficient way. The model requires pressure time series as input parameters, therefore, the lack of regular pressure measurements in geothermal wells of Szentes resulted in significant uncertainties. Still, we managed to identify a potential delay in pressure drop and subsidence, implying a time-decay compaction behaviour of the reservoir system,  and we arrived at realistic estimates for the compaction coefficient of the reservoir. The improved parametrization enables better forecasting of the reservoir behaviour and facilitates the assessment of future subsidence scenarios. This study thus demonstrates the effectiveness of InSAR-based ground motion data and inverse geomechanical modelling for the monitoring of geothermal reservoirs and the establishment of a sustainable production scheme.</p>


Food Research ◽  
2021 ◽  
Vol 5 (S1) ◽  
pp. 182-187
Author(s):  
A.K. Mukri ◽  
J.H. Tan ◽  
S.M. Tahir ◽  
M.S. Anuar ◽  
S.M. Yusoff

Cocoa powder is an important ingredient in the confectionery industry and, mannitol is an alternative sugar alcohol. In this work, mannitol powder was mixed with cocoa powder and compacted into tablet form via the uniaxial die compaction process. The frictional, compaction, tablet mechanical and disintegration properties were studied due to their importance in characterizing the behaviour of the tablets during processing and its final product characteristics at varying mannitol contents. The composition of mannitol in the mannitol-cocoa tablet varied at 95% w/w, 50% w/w and 5% w/w, while pure 100% w/w mannitol and cocoa tablets were set as controls. The compaction pressures used in making the tablets varied at 37.67 MPa, 75.34 MPa, 113.01 MPa, 150.68 MPa and 188.35 MPa. The compaction behaviour of the powder during the compaction process was evaluated using the plastic work and the maximum ejection stress values. The tablet strength was determined using the tensile strength method and tablet disintegration study was also conducted. The results showed that the increase in the compaction pressures increased the plastic work, maximum ejection pressure, tablet strength and also its disintegration time. The tablet formed having 95% w/w mannitol composition exhibited the highest plastic work value of 10.32±0.01 J, highest maximum ejection pressure value of 4.4±0.06 MPa, highest tensile strength value of 1.06±0.04 MPa and shortest disintegration time of 171±51 s amongst the three different mannitol compositions studied. Meanwhile, the effects of mannitol composition in the tablet on these observed responses were also dependent upon the compaction pressures used during tablet formation. In conclusion, the addition of mannitol improved the tablet strength and shorten the disintegration time in the experimental range employed in this study.


2021 ◽  
Vol 249 ◽  
pp. 09010
Author(s):  
Teng Man ◽  
Kimberly Hill

Hot mixed asphalt (HMA) is a mixture of particles (coarse and fine aggregates) and interstitial fluid (asphalt binder) designed to compact and harden for long-lasting roads. In this study, we implement a two-scale approach to capture the compaction behaviour of hot asphalt mixtures using both a granular-slurry rheology (GSR) at a smaller scale and a discrete element method (DEM) simulation at the scale of a compactor. We show that this modelling effort captures the compaction of HMA with different binder viscosities modified by adding graphene nano-platelets (GNP). This research has the capacity to shed light on how the properties of mixture components can influence compaction efficiency and effectiveness.


2020 ◽  
pp. 627-632
Author(s):  
U. Heemann ◽  
S. Heusermann ◽  
W. Sarfeld ◽  
B. Faust

Sign in / Sign up

Export Citation Format

Share Document