scholarly journals Experimental Study of Improving the Properties of Lime-Stabilized Structural Lateritic Soil for Highway Structural Works using Groundnut Shell Ash

Author(s):  
Olugbenga AMU ◽  
Oluwaseun ADETAYO ◽  
Feyidamilola FALUYI ◽  
Emmanuel AKINYELE

This research considered the viability of groundnut shell ash (GSA) on lime-stabilized lateritic soil for highway structural works. Three samples of lateritic soil, named samples A, B, and C, were gathered from Idita-Mokuro, NTA-Mokuro, and ETF burrow pits, respectively, in Ile-Ife, Osun State, Nigeria. Preliminary tests were completed on the samples in their natural states and when stabilized with optimum lime. Engineering properties were performed while 2, 4, and 6 % GSA contents were added to the soil samples at optimum lime. The Atterberg limit tests showed a significant reduction in the plasticity index for samples A and C when stabilized with lime. Compaction test showed a decrease in the maximum dry density from 1,685 to 1,590 kg/m3 for sample A, 1,599 to 1,512 kg/m3 for sample B, and 1,396 to 1,270 kg/m3 for sample C on stabilizing with lime; the introduction of GSA to stabilized lime soil diminished the maximum dry density for all the soil samples, with sample A reduced to 1,435 and 1,385 kg/m3 at 2 and 4 GSA contents, respectively. The addition of GSA improved the engineering properties of lime-stabilized soils as the unsoaked CBR esteems expanded for all soil samples. At an optimum lime dosage, the addition of 2 % GSA expanded the triaxial shear strength from 60.43 to 188.36 kN/m2 for sample A and, at 4 % GSA content, both soil samples B and C increased from 19.19 to 201.48 kN/m2 and 30.62 to 111.65 kN/m2, respectively. Conclusively, GSA improved the toughness and strength of lime-stabilized lateritic soil for highway structural works.

Author(s):  
Oluwaseun A. Adetayo ◽  
◽  
Olugbenga O. Amu ◽  
Feyidamilola Faluyi ◽  
Emmanuel Akinyele ◽  
...  

This study considered the practicality of groundnut shell ash (GSA) on laterite stabilized with lime for civil structures. Three site locations of lateritic soil named specimen I, II and III were assembled from Ifewara, Atakunmosa West Local Government Area, Ilesa East Local Government Area, and Ilesa West Local Government, all situated in Osun State, Nigeria. Preliminary tests were wrapped up on the soil specimens in their characteristic states and when stabilized with optimum lime. Compaction, California Bearing Ratio (CBR) and undrained triaxial shear strength tests were performed when fluctuating paces of 2 %, 4 %, 6 %, and 8 % of GSA were included to the soil specimens at optimum lime. The Atterberg limits tests showed a critical decrease in plasticity index for all the soil specimens when stabilized with lime. Compaction test showed a lessening in the maximum dry density from 1732 kg/m3 to 1651 kg/m3 for specimen I, 1874 kg/m3 to 1621 kg/m3 for specimen II and 1683 kg/m3 to 1655 kg/m3 for specimen III on stabilizing with lime, presentation of GSA to stabilized lime-soil decreases the maximum dry density for all the soil specimen with specimen I diminished to 1642 kg/m3, 1595 kg/m3, 1611 kg/m3 and 1611 kg/m3 at 2 %, 4 %, 6 % and 8 % GSA substances individually. Addition of GSA substances enhanced the engineering properties of laterite stabilized with lime as the unsoaked CBR values expanded for all the soil specimens. At optimum lime measurements, addition of 4 % GSA expanded the shear strength to 110.74 kN/m2 and 127.53 kN/m2 for specimens I and II individually while at 6 % GSA addition, the shear strength of specimen III was peak 118.24 kN/m2. The expansion in shear strength further affirms the improvement prior shown in the geotechnical properties of lateritic soil with the addition of groundnut shell ash. addition of 2 % GSA content extended the triaxial shear strength from 60.43kN/m2 to 188.36kN/m2 for specimen I, and at 4% GSA content, both soil specimens II and III expanded from 19.19kN/m2 to 201.48kN/m2 and 30.62kN/m2 to 111.65kN/m2 separately. Conclusively, GSA improved the durability and strength of lateritic soils stabilized with lime for civil structures.


2019 ◽  
Vol 14 (2) ◽  
pp. 95-106
Author(s):  
Oluwaseun Adetayo ◽  
Olugbenga Amu ◽  
Sunday Alabi

AbstractThis study investigated the suitability of pulverized snail shell (PSS) as partial replacement of cement stabilized soil in foundation constructions. Preliminary and engineering tests were carried out on the soil samples. The optimum cement content fixed at 11% in correlation to Unified Soil Classification System, the PSS was introduced at varying percentages of 2%, 4%, 6%, 8% and 10%. Results revealed that, addition of PSS and 11% cement to lateritic soil caused a reduction in both liquid limits and plasticity index and an increased in plastic limits for all samples. Engineering tests showed the maximum dry density at optimum cement increased from 1493.34 ± 103.58 kg.m−3 to 1632 ± 435.81 kg.m−3 for sample A; 1476.77 ± 367.51 kg.m−3 to 1668 ± 202.58 kg.m−3 for sample B; 1460.77 ± 623.58 kg.m−3 to 1651 ± 135.45 kg.m−3 for sample C. The CBR recorded highest value at 4%PSS optimum cement for all samples. The addition of pulverized snail shell increased the strength of cement stabilized lateritic soil for structural foundation construction.


2018 ◽  
Vol 1 (March 2018) ◽  
Author(s):  
O.M Osuolale ◽  
A.A Raheem ◽  
J.R Oluremi ◽  
A.K Adeosun

A good understanding of the engineering properties of lateritic soil is highly essential for effective use of the soil for highway pavement construction. The alarming rate of highway pavement failures within the study area has been attributed to paucity of information on the properties of the soil within the study zone. Therefore, the lateritic soils along selected locations along Ibadan – Oyo were characterised for their suitability for highway construction. Ten (10) lateritic soil samples were collected and they were labelled Trial Pit (TP) 1 to 10. The samples were subjected to the following laboratory tests: Sieve analysis, Liquid Limit (LL), Plastic Limit (PL), and Shrinkage Limit (SL), British Standard (BS), West African Standard (WAS), Modified AASHTO compaction and California bearing ratio. The samples were classified using AASHTO classification system. The results of the sieve analyses for percentage passing the 75 m ranged from 15.6 – 33.7%, LL, PL and SL ranged from 30.1 – 39.2%, 2.6 – 23.1%, and 2.1 – 9.3%, respectively. The maximum dry density (MDD) and optimum moisture content (OMC) for British, West African and Modified AASHTO compaction ranged from (1.48 – 1.94 g/cm’ and 10.40 – 16.40%), (1.69 – 2.40 g/cm’ and 9.60-14.40%) and (1.79 – 2.60 g/cm’ and 6.60- 11.60%), respectively. The ten samples are classified as A-2-6 soil. Based on the characterisation, all the samples are only suitable for fill and subgrade except sample TP2 that is also suitable for subbase and base course construction in highway pavement.


Author(s):  
A. M. Salman

This research investigates the potential use of groundnut shell ash (GSA) as soils strength enhancer. The GSA was used as admixture on selected soil samples from four different locations and samples were named T1, T2, T3 & T4. The tests carried out on the samples include Atterberg limit, sieve size analysis, soil hydrometer, compaction and California bearing ratio (CBR), X-ray fluorescence (XRF). Sieve size analysis, soil hydrometer test, Atterberg limit test were used to classify soil samples’ properties and classification was done as per AASHTO soil classification system. Sample T1 was classified as A-6, samples T2, T3 and T4 were classified as A-4. GSA was added to the soil samples; 2, 4, 6, 8, 10 and 15% of GSA by weight of soil samples. Compaction test and California bearing ratio (CBR) were carried out on soil samples with added GSA. Results from XRF showed that SiO2 + Al2O3+ Fe2O3 = 25.61%. For GSA to be classified as pozzolan, SiO2 + Al2O3+ Fe2O3 ≥ 70% as per ASTM C618 – 08. Therefore, GSA cannot be classified as pozzolan as it does not meet requirement stipulated in ASTM C618 but rather as inert pores filler. Based on the results from compaction and CBR, the study showed that 4-8% of GSA was found to have improved and enhanced the strength of the soil samples.


2018 ◽  
Vol 192 ◽  
pp. 02054
Author(s):  
Panu Promputthangkoon ◽  
Tavorn Kuasakul

It can be said that the soil compaction test is currently the standard method for obtaining the right amount of water to be added in order to achieve a maximum dry density. Then, the water content obtained from laboratory work, known as optimum moisture content, is utilised in the field for compacting the soil. It should be noted that the compaction test is carried out on a soil sample prepared in a mould horizontally laid. In the field, however, quite often the compaction is done on side embankments or sloping grounds. Hence, using the laboratory result to control the field density for such cases is problematic. Therefore, this study developed a device that could be used to conduct the compaction test concerning the following conditions: (1) compaction is vertically applied to a soil sample inclined at various angles (VC), and (2) compaction is normal to an inclined soil sample (IC). Some initial tests on lateritic soil using both methods developed showed that at the same energy applied the densities are quite different. These results confirm that, in the case of sloping ground, the standard compaction test may not be appropriate.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
A. K. Lawer ◽  
S. I. K. Ampadu ◽  
F. Owusu-Nimo

AbstractWeak lateritic subgrades are more often than not encountered during road construction in Ghana. This makes it necessary to find economically efficient ways to improve the engineering properties of these marginal lateritic soils. The objective of this study is to investigate the effects of coconut fiber (30 mm, 60 mm and 90 mm fiber lengths) and palm fiber on some geotechnical characteristics of a weak lateritic subgrade. The lateritic soil was collected from the KNUST campus and blended with various percentages of the fibers varying between 0.1 and 1.0% by weight of dry soil. The mixed materials were then subjected to various laboratory tests including compaction, unconfined compression test and 4-day-soaked California bearing ratio test. From the results, it was observed that increasing the fiber content decreased the maximum dry density and increased the optimum moisture content. The inclusion of the fiber increased the soaked CBR from 7 to a maximum of 18, 22, and 25 at 30 mm, 60 mm and 90 mm fiber lengths, respectively. The unconfined compressive strength also increased from 140 to a maximum of 353 kPa, 398 kPa and 447 kPa, respectively, for 30 mm, 60 mm and 90 mm fiber lengths. Similarly, palm fiber inclusion recorded maximum soaked CBR value of 14% and UCS value of 352 kPa. These peak values were obtained at optimum fiber contents of 0.2%.


Author(s):  
S.V. Satyanarayana ◽  
Mohammed Al Jahwari

In the Gulf region most of the soils require soil stabilization to increase soil bearing capacity for construction of safe and sustainable buildings. The soils are stabilized either by physical stabilization, chemical stabilization or by mechanical stabilization. The aim of this project is to stabilize calcareous soil in the Barka region with synthetic polymers. The soil samples from the Barka region collected by using standard soil sampling methods. The synthetic polymer was mixed with the calcareous soil in 1%, 3% and 5%. The soil samples were tested for sieve analysis, Atterberg Limit, Particle Density, Proctor test and California Bearing Ratio test before and after addition of synthetic polymer. It was observed that there is a positive impact on the geotechnical properties of soil with the addition of Polymer. The optimum moisture content of the soil reduced and the maximum dry density of the soil increased. The optimum results were found at 5% addition of polymer where the optimum moisture content was found out to be 12.6% and the maximum dry density was found out to be 1.997 Mg/m3. The Atterberg limit test to show that the plasticity index of the soil reduced with the addition of polymer and the optimum results were found out at 5% addition of polymer. Finally, the CBR test results determine that the soil bearing capacity increases with the addition of Polymer. After the addition of 5% Polymer, the CBR value was found out to be 27.465% compared to 14.19% for the fresh calcareous soil. The results are encouraging. Keywords: Atterberg Limit, Calcareous soil, CBR, polymer, stabilization.


Author(s):  
Abiola. Michael Dauda ◽  
Joseph O. Akinmusuru ◽  
Oluwaseun. A. Dauda ◽  
Taiwo O. Durotoye ◽  
Kunle Elizah Ogundipe ◽  
...  

This study used eco-friendly materials known as Periwinkle Shell Powder (PSP) in stabilizing the engineering properties of lateritic soil. Preliminary test was performed on the un-stabilized lateritic soil for the purposes of identification and classification (natural moisture content, liquid limits, plastic limits, and plasticity index). The engineering tests were conducted on the lateritic soil stabilized with additions of (2, 4, 6, 8 and 10 %) PSP and OPC respectively. The result showed that cement gave a progressive increase in the Maximum Dry Density (MDD) of the lateritic soil from 1875 kg/m3 (2 %) to 2294 kg/m3 (10 %) respectively. This represents 22 % increase in the MDD from the un-stabilized state. For PSP, the Maximum MDD was attained at 6 % (1974 kg/m3), representing 5.3 % increase in MDD of the soil from the un-stabilized state. For both stabilizing agent, the Optimum Moisture Content (OMC) increases from 13.65 % to 13.83 % and from 11.72 % to 14.41 % for Cement and Periwinkle Shell Powder respectively. PSP recorded an increase of 5.6 % of CBR value compared with OPC that recorded an increase of 34 % CBR value. The study therefore concluded that Periwinkle Shell Powder (PSP) could be considered as good stabilizer for clayey or lateritic, and its uses as a stabilizer could also provide a big relief to the environmental pollution caused by its indiscriminate dumping.


2015 ◽  
Vol 72 (3) ◽  
Author(s):  
Siaw Yah Chong ◽  
Khairul Anuar Kassim

Marine clay is a problematic construction material, which is often encountered in Malaysian coastal area. Previous researchers showed that lime stabilization effectively enhanced the engineering properties of clay. For soft clay, both strength and consolidation characteristics are equally important to be fully understood for design purpose. This paper presented the effect of lime on compaction, strength and consolidation characteristics of Pontian marine clay. Compaction, unconfined compression, direct shear, Oedometer and falling head permeability tests were conducted on unstabilized and lime stabilized samples at various ages. Specimens were prepared by compaction method based on 95 percent maximum dry density at the wetter side of compaction curve. It was found that lime successfully increased the strength, stiffness and workability of Pontian marine clay; however, the permeability was reduced. Unconfined compressive strength of stabilized soil was increased by 49 percent at age of 56 days whereas compressibility and permeability was reduced by 48 and 67 percent, respectively. From laboratory tests, phenomenon of inconsistency in engineering characteristics was observed for lime stabilized samples below age of 28 days. This strongly proved that lime stabilized soil underwent modification phase before stabilization phase which provided the long term improvement.


The aim of the present study is to determine the physical and geotechnical characteristics of municipal solid waste (MSW) from an open dump site located in Una town, Himachal Pradesh (India) for the analysis of settlement and structural stability of landfill. Degraded waste was tested for different time intervals ranging from 6 months to 6 years. The physical characterization and the geotechnical tests were performed to determine the composition and the engineering properties of MSW respectively. The presence of moisture content in the fresh waste was 49.5±1.05% but for the degraded (or old) waste it varied between 39.8 to 51.6%. The specific gravity of fresh and old waste varied between 1.83±0.05 and 1.85 for 6 months old waste and 2.28 for 5-6 years old degraded waste respectively. The maximum dry density (MDD) was observed to be 4.28 kN/m2 for fresh waste at the optimum moisture content (OMC) of 78.1% and 4.47 kN/m3 for 6 months old waste and 6.25 kN/m3 for the degraded waste of 5-6 years at 80.2, 85.4% of OMC respectively. The hydraulic conductivity (k) of MSW was found to be decreasing with the degradation of MSW and the overburden pressure whereas the shear strength increased along with the degradation of the waste. The cohesion (c) and angle of internal friction (φ) increased respectively from 31.2 kPa(fresh) to 38 kPa(degraded) and 14° to 22° with the increase in waste degradation. The compression ratio of fresh waste was within the ranges of 0.19-0.29 and for degraded MSW it varied between 0.12 for 6 months old waste and 0.17 for 5-6 years old degraded waste respectively.


Sign in / Sign up

Export Citation Format

Share Document