Effect of Lime on Compaction, Strength and Consolidation Characteristics of Pontian Marine Clay

2015 ◽  
Vol 72 (3) ◽  
Author(s):  
Siaw Yah Chong ◽  
Khairul Anuar Kassim

Marine clay is a problematic construction material, which is often encountered in Malaysian coastal area. Previous researchers showed that lime stabilization effectively enhanced the engineering properties of clay. For soft clay, both strength and consolidation characteristics are equally important to be fully understood for design purpose. This paper presented the effect of lime on compaction, strength and consolidation characteristics of Pontian marine clay. Compaction, unconfined compression, direct shear, Oedometer and falling head permeability tests were conducted on unstabilized and lime stabilized samples at various ages. Specimens were prepared by compaction method based on 95 percent maximum dry density at the wetter side of compaction curve. It was found that lime successfully increased the strength, stiffness and workability of Pontian marine clay; however, the permeability was reduced. Unconfined compressive strength of stabilized soil was increased by 49 percent at age of 56 days whereas compressibility and permeability was reduced by 48 and 67 percent, respectively. From laboratory tests, phenomenon of inconsistency in engineering characteristics was observed for lime stabilized samples below age of 28 days. This strongly proved that lime stabilized soil underwent modification phase before stabilization phase which provided the long term improvement.

2018 ◽  
Vol 34 ◽  
pp. 01012 ◽  
Author(s):  
Mohammed Ali Mohammed Al-Bared ◽  
Aminaton Marto ◽  
Indra Sati Hamonangan Harahap ◽  
Fauziah Kasim

Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.


2020 ◽  
Vol 4 (1) ◽  
pp. 08-14
Author(s):  
Youdeowei, P.O. ◽  
Nwankwoala, H.O. ◽  
Ayibanimiworio, G.T

This study assesses the stabilization of marine clay soil using cement and lime to improve on the subgrade material. The tests conducted include: the natural moisture content, specific gravity, sieve analysis, Atterberg limit, compaction and California Bearing Ratio (CBR). The types of stabilization used were mechanical and chemical. The results obtained were classified using AASHTO classification system and based on the results the soil corresponds to group A-6 soils. The highest CBR values of 33.24% and 424.35% were obtained at 20% cement content for unsoaked and soaked and for lime the highest CBR values were 5.07 and 10.46 for 11% lime content for both unsoaked and unsoaked. Based on the results obtained, the addition of cement and lime to clay soil in the presence of water improved the CBR values for soft clay stabilization for highway construction with low traffic volume. It is therefore concluded that the addition of cement and lime to clay soil improved the bearing capacity and the maximum dry density of the clay soil. Further research should be carried out to examine the effects of industrial by-products on effective clay soil stabilization.


2020 ◽  
Vol 1 (3) ◽  
pp. 1-7
Author(s):  
Joseph Ejelikwu Edeh

The functionality of a highway pavement is often judged by the quality and engineering properties of the soil-pavement structures and the materials used to improve the properties of these underlying soils. In this study, crushed concrete waste and carbide waste, whose associated disposal problems constitute environmental hazard, were used for the stabilization of clayey soil using British Standard heavy (Modified Proctor) compaction energy, and used as highway construction material. The various mixes were subjected to particles size analyses, specific gravity, moisture content, Atterberg limits, compaction characteristics, California bearing ratio, unconfined compressive strength test triaxial and water absorption tests. The test results show that the properties of the clayey soil improved with its stabilization with crushed concrete and carbide wastes. The maximum dry density decreased from 1.93 to 1.29 Mg/m3 with corresponding increase in optimum moisture content from 6.0 to 16.6 %, as carbide waste content increased, and crushed concrete waste and clayey soil contents of the mixtures decreased. The maximum California bearing ratio value of 55.01 % (unsoaked and soaked for 24 h) recorded for 25%CS + 75% (75%CCW + 25%CW) mix can be used as subbase material in flexible pavement construction. Further work may assess resilient modulus of this material under cyclic load.


2021 ◽  
Vol 84 (1) ◽  
pp. 159-170
Author(s):  
Muhammad Syamsul Imran Zaini ◽  
Muzamir Hasan ◽  
Ling Sin Yie ◽  
Khairil Azman Masri ◽  
Ramadhansyah Putra Jaya ◽  
...  

The application of chemical stabilizer in soil stabilization can effectively reduce the negative environmental impact in the construction industry. However, the stabilization of soft clay remains a challenge due to the costly and non-eco-friendly materials such as cement and lime. This research demonstrates the combination of SF and ESA in stabilizing the kaolin soils, based on the basic engineering properties and undrained shear strength (USS). Its effect was studied via the inclusion as cement replacement material in kaolin soil at 2, 4 and 6% (by weight of dry soft kaolin clay soil) of SF and ESA substitutions of 3, 6 and 9% (by weight of dry soft kaolin clay and SF content). The result shows a considerably lower specific gravity (4.9% reduction), reduced plasticity index (PI)(48.4% reduction), decreased maximum dry density (MDD) (5.5% reduction), increased optimum moisture content (OMC)(8.7% increment), and higher USS (68.8%). In conclusion, the combinations of SF and ESA as soil stabilization agents successfully enhance the soil strength of the kaolin opening a route to the low cost and eco-friendly materials in soil stabilization.


The aim of the present study is to determine the physical and geotechnical characteristics of municipal solid waste (MSW) from an open dump site located in Una town, Himachal Pradesh (India) for the analysis of settlement and structural stability of landfill. Degraded waste was tested for different time intervals ranging from 6 months to 6 years. The physical characterization and the geotechnical tests were performed to determine the composition and the engineering properties of MSW respectively. The presence of moisture content in the fresh waste was 49.5±1.05% but for the degraded (or old) waste it varied between 39.8 to 51.6%. The specific gravity of fresh and old waste varied between 1.83±0.05 and 1.85 for 6 months old waste and 2.28 for 5-6 years old degraded waste respectively. The maximum dry density (MDD) was observed to be 4.28 kN/m2 for fresh waste at the optimum moisture content (OMC) of 78.1% and 4.47 kN/m3 for 6 months old waste and 6.25 kN/m3 for the degraded waste of 5-6 years at 80.2, 85.4% of OMC respectively. The hydraulic conductivity (k) of MSW was found to be decreasing with the degradation of MSW and the overburden pressure whereas the shear strength increased along with the degradation of the waste. The cohesion (c) and angle of internal friction (φ) increased respectively from 31.2 kPa(fresh) to 38 kPa(degraded) and 14° to 22° with the increase in waste degradation. The compression ratio of fresh waste was within the ranges of 0.19-0.29 and for degraded MSW it varied between 0.12 for 6 months old waste and 0.17 for 5-6 years old degraded waste respectively.


2013 ◽  
Vol 710 ◽  
pp. 348-351
Author(s):  
Zheng Rong Zhao ◽  
Lei Wang ◽  
Hong Xia Yang

Through compaction test discussed about the compaction characteristics of expansive soil by lime modified in middle of Shandong province. The results show that the optimum moisture content is lower when the expansive soil is cured by dry compaction method, and the maximum dry density is higher. Compaction curve appeared the phenomenon of two peaks when expansive soil is cured by wet compaction method.Lime content of lime improved expansive soil, particle size composition, age and compaction function have influence on compaction curve.With the increase of the quantity of lime, the optimum moisture content increases, the maximum dry density decreases. With the age growth, the optimum moisture content increase slightly,the maximum dry density decreases slightly. The bigger the compaction work, the smaller moisture content is, the larger the maximum dry density is.


2020 ◽  
Vol 857 ◽  
pp. 259-265
Author(s):  
Jasim M. Abbas ◽  
Amer M Ibrahim ◽  
Abdalla M. Shihab

The civil engineering projects that includes soft clay within its activities has a serious concern of hazards, such hazards can be overcame by treating the existing soils by certain materials which are named as "stabilizers". The common materials that are highly used in this field are ordinary Portland cement, fly ash, lime and rice husk ash, etc. Each one of these stabilizers has its known shortcomings. The alkali activation of any alumina silicate source produces some kind of cost effective primary binding gel which is known as "Geopolymers". This study is devoted to investigate the role of liquid over fly ash ratio to some soil – FA based Geopolymers geotechnical properties. Such ratio is taken as 2.71, 3.167, 3.8 and 4.75 respectively within the experimental program and the investigated geotechnical properties are the specific gravity, liquid and plastic limit, compaction characteristics and California bearing ratio. The tests results showed that the maximum dry density decreased about 42 % at 2.71 liq/FA whereas this the specific gravity decreased 27 % at the same this ratio. In addition, the 3.8 and 4.75 of such limits revealed no plastic behavior due to the high presence of liquid.


2015 ◽  
Vol 667 ◽  
pp. 341-346 ◽  
Author(s):  
Jue Qiang Tao ◽  
Wen Yan Lin ◽  
Xiao Hua Luo ◽  
Xin Qiu ◽  
Jin Hong Wu

To explore the ionic liquid soil stabilizer improved soil mechanical properties, this experiment conducted liquid-plastic limit test and compaction test. On the basis of determining the optimal dosage of ionic soil stabilizer and mastering different mixture optimum moisture content and maximum dry density, the standard sample which consists of the Zhejiang red-brown clay and curing material including ionic soil stabilizer, cement and lime carried out the unconfined compressive strength test in different curing age and compaction degree. This paper analyzed the change reason of compaction and curing age about the stabilized soil. The results show that the ionic soil stabilizer has a significant effect on the compressive strength improvement of stabilized soil. Compared stabilized soil with traditional treatment soil, the compressive strength of stabilized soil has improved obviously with the increase of curing age and compaction degree. Research findings provide useful technical support and practice basis for promoting and applying ionic soil stabilizer in infrastructure construction.


2019 ◽  
Vol 14 (2) ◽  
pp. 95-106
Author(s):  
Oluwaseun Adetayo ◽  
Olugbenga Amu ◽  
Sunday Alabi

AbstractThis study investigated the suitability of pulverized snail shell (PSS) as partial replacement of cement stabilized soil in foundation constructions. Preliminary and engineering tests were carried out on the soil samples. The optimum cement content fixed at 11% in correlation to Unified Soil Classification System, the PSS was introduced at varying percentages of 2%, 4%, 6%, 8% and 10%. Results revealed that, addition of PSS and 11% cement to lateritic soil caused a reduction in both liquid limits and plasticity index and an increased in plastic limits for all samples. Engineering tests showed the maximum dry density at optimum cement increased from 1493.34 ± 103.58 kg.m−3 to 1632 ± 435.81 kg.m−3 for sample A; 1476.77 ± 367.51 kg.m−3 to 1668 ± 202.58 kg.m−3 for sample B; 1460.77 ± 623.58 kg.m−3 to 1651 ± 135.45 kg.m−3 for sample C. The CBR recorded highest value at 4%PSS optimum cement for all samples. The addition of pulverized snail shell increased the strength of cement stabilized lateritic soil for structural foundation construction.


2021 ◽  
Vol 6 (2) ◽  
pp. 044-050
Author(s):  
Tsion Mindaye ◽  
Emer Tucay Quezon ◽  
Temesgen Ayna

Expansive soil swells when it is wet, and it will shrink when it dries. Due to this behavior of the soil, the strength and other properties of soil are inferior. To improve its properties, it is necessary to stabilize the soil with different stabilizers. Soil stabilization is a process to treat the soil to maintain, alter, or improve expansive soil performance. In this study, the potential of 'Fino' as stabilizing additive to expansive soil was investigated for the improving engineering properties of expansive soil to be used as subgrade material. The evaluation involved the determination of the Free Swell test, CBR test, Atterberg's limits, and the Proctor test of expansive soil in its natural state as well as when mixed with varying proportions of 'Fino.' The practices were performed on six proportions 5%, 10%, 15%, 20%, 25% and 30 % with expansive soil. The research result indicated a considerable reduction in Swelling, and the Maximum dry Density of soil was improved. Optimum moisture content decreased in increasing 'Fino.' At 30% of 'Fino,' the CBR values of expansive soil increased from 1.06% to 5.94%, Liquid Limit decreased from 95.2% to 29.4%, plasticity index decreased from 57.24% to 17.82% and the degree of expansion of the natural subgrade soil has reduced from "very high to medium." Hence, it is concluded that the 'Fino' at 30% has shown significant improvement in the expansive soil's engineering properties meeting the ERA and AASHTO Standard specifications requirements for road subgrade material.


Sign in / Sign up

Export Citation Format

Share Document