scholarly journals Geotechnical Properties of Lateritic Soil Stabilized with Periwinkle Shells Powder

Author(s):  
Abiola. Michael Dauda ◽  
Joseph O. Akinmusuru ◽  
Oluwaseun. A. Dauda ◽  
Taiwo O. Durotoye ◽  
Kunle Elizah Ogundipe ◽  
...  

This study used eco-friendly materials known as Periwinkle Shell Powder (PSP) in stabilizing the engineering properties of lateritic soil. Preliminary test was performed on the un-stabilized lateritic soil for the purposes of identification and classification (natural moisture content, liquid limits, plastic limits, and plasticity index). The engineering tests were conducted on the lateritic soil stabilized with additions of (2, 4, 6, 8 and 10 %) PSP and OPC respectively. The result showed that cement gave a progressive increase in the Maximum Dry Density (MDD) of the lateritic soil from 1875 kg/m3 (2 %) to 2294 kg/m3 (10 %) respectively. This represents 22 % increase in the MDD from the un-stabilized state. For PSP, the Maximum MDD was attained at 6 % (1974 kg/m3), representing 5.3 % increase in MDD of the soil from the un-stabilized state. For both stabilizing agent, the Optimum Moisture Content (OMC) increases from 13.65 % to 13.83 % and from 11.72 % to 14.41 % for Cement and Periwinkle Shell Powder respectively. PSP recorded an increase of 5.6 % of CBR value compared with OPC that recorded an increase of 34 % CBR value. The study therefore concluded that Periwinkle Shell Powder (PSP) could be considered as good stabilizer for clayey or lateritic, and its uses as a stabilizer could also provide a big relief to the environmental pollution caused by its indiscriminate dumping.

The aim of the present study is to determine the physical and geotechnical characteristics of municipal solid waste (MSW) from an open dump site located in Una town, Himachal Pradesh (India) for the analysis of settlement and structural stability of landfill. Degraded waste was tested for different time intervals ranging from 6 months to 6 years. The physical characterization and the geotechnical tests were performed to determine the composition and the engineering properties of MSW respectively. The presence of moisture content in the fresh waste was 49.5±1.05% but for the degraded (or old) waste it varied between 39.8 to 51.6%. The specific gravity of fresh and old waste varied between 1.83±0.05 and 1.85 for 6 months old waste and 2.28 for 5-6 years old degraded waste respectively. The maximum dry density (MDD) was observed to be 4.28 kN/m2 for fresh waste at the optimum moisture content (OMC) of 78.1% and 4.47 kN/m3 for 6 months old waste and 6.25 kN/m3 for the degraded waste of 5-6 years at 80.2, 85.4% of OMC respectively. The hydraulic conductivity (k) of MSW was found to be decreasing with the degradation of MSW and the overburden pressure whereas the shear strength increased along with the degradation of the waste. The cohesion (c) and angle of internal friction (φ) increased respectively from 31.2 kPa(fresh) to 38 kPa(degraded) and 14° to 22° with the increase in waste degradation. The compression ratio of fresh waste was within the ranges of 0.19-0.29 and for degraded MSW it varied between 0.12 for 6 months old waste and 0.17 for 5-6 years old degraded waste respectively.


Author(s):  
I. O Ameen

This study investigated the impact of compactive efforts on A-7-5 lateritic soil stabilized with Bamboo Leaf Ash (BLA) mixed with lime. Preliminary tests were conducted on the soil sample for identification and classification. Compaction tests (using British Standard Light (BSL), British Standard Heavy (BSH) and West Africa Standard (WAS) compactive efforts) were performed on the sample in both natural and stabilized states by incorporating 2, 4, 6 and 8% Bamboo Leaf Ash mixed together with 1, 2, and 3% lime by weight of soil sample. Maximum dry density (MDD) increased to 1766 kg/m3 at 3% lime and 6% BLA, 1818 kg/m3 at 3% lime and 8% BLA and 1866 kg/m3 at 3% lime and 2% BLA while the optimum moisture content decreased to 12.70% at 3% and lime 8% BLA, 11.40% at 2% lime 6% BLA and 11.12% at 3% lime and 2% BLA for BSL, WAS and BSH, respectively. Based on these findings, the addition of lime-BLA enhanced the soil and has a promising prospect for stabilization of lateritic soil.


2020 ◽  
Vol 3 ◽  
pp. 12-25
Author(s):  
Olaoluwa Oluwaniyi ◽  
Imoleayo Fatoyinbo ◽  
Akinola Bello ◽  
Joshua Owoseni

Failure of highway pavement and collapse of building in basement complex of Nigeria is often related to the instability of the residual. This study evaluated the strength characteristics of gneiss-derived residual Soils as materials usable for road pavement structures. A total of eleven soil samples derived from granite gneiss were subjected to laboratory geotechnical analyses based on standard practices. The geotechnical analyses reveal the soils’ natural moisture content, specific gravity, grain sizes, consistency limits, shearing strengths, maximum dry density, and optimum moisture content. Based on AASHTO classification, the soil samples are classified as A-7-6, A-6, and A-7-5. The results of the laboratory analyses revealed that the natural moisture content and specific gravity ranged from 8.30 to 22.70% and 2.6 to 2.8 respectively. Particle size analysis reveals that the coarse contents of the soils ranged from 28.8% to 59.8% and amount of fines ranged from 40.2 to 71.2%. The liquid limit ranged from 31.3% to 68.3%, plastic limit ranged from 20% to 28.0%, plasticity index ranged from 4.8% to 38.90% and linear shrinkage ranged from 5.7 to 13.6%. The maximum dry density ranged from 1481 kg/m3 to 1921 kg/m3 and optimum moisture content ranged from 15.2% to 27.6%. Undrained triaxial shear strength (Cu) ranged from 43.0 Kpa to 250.3Kpa, angle of friction ranges from 11.7 to 29.30, and unconfined compressive strength ranged from 153 to 356.5Kpa. The results indicate that the residual soils are poor sub-grade and foundation materials due to their high amount of fines, linear shrinkage values, plasticity, and swelling potential, as well as low maximum dry density.


Author(s):  
Olugbenga AMU ◽  
Oluwaseun ADETAYO ◽  
Feyidamilola FALUYI ◽  
Emmanuel AKINYELE

This research considered the viability of groundnut shell ash (GSA) on lime-stabilized lateritic soil for highway structural works. Three samples of lateritic soil, named samples A, B, and C, were gathered from Idita-Mokuro, NTA-Mokuro, and ETF burrow pits, respectively, in Ile-Ife, Osun State, Nigeria. Preliminary tests were completed on the samples in their natural states and when stabilized with optimum lime. Engineering properties were performed while 2, 4, and 6 % GSA contents were added to the soil samples at optimum lime. The Atterberg limit tests showed a significant reduction in the plasticity index for samples A and C when stabilized with lime. Compaction test showed a decrease in the maximum dry density from 1,685 to 1,590 kg/m3 for sample A, 1,599 to 1,512 kg/m3 for sample B, and 1,396 to 1,270 kg/m3 for sample C on stabilizing with lime; the introduction of GSA to stabilized lime soil diminished the maximum dry density for all the soil samples, with sample A reduced to 1,435 and 1,385 kg/m3 at 2 and 4 GSA contents, respectively. The addition of GSA improved the engineering properties of lime-stabilized soils as the unsoaked CBR esteems expanded for all soil samples. At an optimum lime dosage, the addition of 2 % GSA expanded the triaxial shear strength from 60.43 to 188.36 kN/m2 for sample A and, at 4 % GSA content, both soil samples B and C increased from 19.19 to 201.48 kN/m2 and 30.62 to 111.65 kN/m2, respectively. Conclusively, GSA improved the toughness and strength of lime-stabilized lateritic soil for highway structural works.


2018 ◽  
Vol 1 (March 2018) ◽  
Author(s):  
O.M Osuolale ◽  
A.A Raheem ◽  
J.R Oluremi ◽  
A.K Adeosun

A good understanding of the engineering properties of lateritic soil is highly essential for effective use of the soil for highway pavement construction. The alarming rate of highway pavement failures within the study area has been attributed to paucity of information on the properties of the soil within the study zone. Therefore, the lateritic soils along selected locations along Ibadan – Oyo were characterised for their suitability for highway construction. Ten (10) lateritic soil samples were collected and they were labelled Trial Pit (TP) 1 to 10. The samples were subjected to the following laboratory tests: Sieve analysis, Liquid Limit (LL), Plastic Limit (PL), and Shrinkage Limit (SL), British Standard (BS), West African Standard (WAS), Modified AASHTO compaction and California bearing ratio. The samples were classified using AASHTO classification system. The results of the sieve analyses for percentage passing the 75 m ranged from 15.6 – 33.7%, LL, PL and SL ranged from 30.1 – 39.2%, 2.6 – 23.1%, and 2.1 – 9.3%, respectively. The maximum dry density (MDD) and optimum moisture content (OMC) for British, West African and Modified AASHTO compaction ranged from (1.48 – 1.94 g/cm’ and 10.40 – 16.40%), (1.69 – 2.40 g/cm’ and 9.60-14.40%) and (1.79 – 2.60 g/cm’ and 6.60- 11.60%), respectively. The ten samples are classified as A-2-6 soil. Based on the characterisation, all the samples are only suitable for fill and subgrade except sample TP2 that is also suitable for subbase and base course construction in highway pavement.


AGROFOR ◽  
2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Eugeniusz ZAWISZA ◽  
Andrzej GRUCHOT

The subject-matter of the work is a mixture of rock and soil from the LafargeDubie mine in Rudawa, southern Poland. The conducted tests aimed at thedetermination of the geotechnical characteristics of this mixture and the evaluationof its suitability for the construction of earth embankments, in particular road ones.The range of the tests comprised determination of parameters characterisingphysical properties, such as granulometric composition, natural moisture content,density of solid particles, optimum moisture content and maximum dry density ofsolid particles, as well as mechanical ones, like shear strength. The obtained resultsshow that the tested mixture is suitable for the construction of road embankments,since as coarse-grained soil, it has a high value of the uniformity coefficient (Cu =1913). Therefore, this is very well graded soil, which provides a good compactionwhen it is built into the embankment. The natural moisture content (on average wn= 9.5%) is close to the optimum one (wopt = 8.5%). The maximum dry density ofsolid particles (ds = 2.16 gcm-3) is much higher than the minimum required (d ≥1.6 gcm-3). The values of the angle of internal friction (on average  = 36) andcohesion (c = 42 kPa) indicate great shear strength, therefore this soil can besubjected to considerable mechanical stresses.


Author(s):  
Simeon O Odunfa ◽  
Adebayo O. Owolabi ◽  
Peter O. Aiyedun ◽  
Obanisola M. Sadiq

Pavement failure has contributed immensely to loss of lives, disruption to normal daily activities and increase amount of money being spent on maintenance annually. One of the causes is associated with inadequate investigations on subgrade materials. This study aimed at examining the geotechnical parameters as factors of pavement failure along Lagos–Ibadan Expressway. Samples were collected at the failed and stable portions on some selected road segments and subjected to laboratory tests including Natural Moisture Content (NMC), Linear Shrinkage(LS), particle size distribution and California Bearing Ratio(CBR). The NMC along the failed sections was on the high side (ranged from 13.11% to 26.89%) compared with the stable sections (ranged from 11.11% to 16.40%). Most of the tested soils have percentage passing 0.075mm sieve more than 35% maximum required by the Federal Ministry of Works and Housing for subgrade materials. The maximum dry density(MDD) for the samples at failed and stable sections ranged from 1550 kg/m3 to 1860 kg/m3; 1650 kg/m3 to 1980 kg/m3 respectively while the Optimum Moisture Content(OMC) ranged from 8.30% to 20.30%. The soaked CBR values ranged from 2% to 17% while the unsoaked values ranged from 4% to 25%. The increase in NMC along the failed portions could be as a result of high water table along these sections. Some of the materials at failed locations had values of LS > 8% which suggests high susceptibility to shrinkage and swelling which results in differential settlement and contributed to pavement failure along these sections of the road. Keywords: Geotechnical, Pavement failures, subsurface investigations, Expressway, subgrade materials.


Author(s):  
Oluwaseun A. Adetayo ◽  
◽  
Olugbenga O. Amu ◽  
Feyidamilola Faluyi ◽  
Emmanuel Akinyele ◽  
...  

This study considered the practicality of groundnut shell ash (GSA) on laterite stabilized with lime for civil structures. Three site locations of lateritic soil named specimen I, II and III were assembled from Ifewara, Atakunmosa West Local Government Area, Ilesa East Local Government Area, and Ilesa West Local Government, all situated in Osun State, Nigeria. Preliminary tests were wrapped up on the soil specimens in their characteristic states and when stabilized with optimum lime. Compaction, California Bearing Ratio (CBR) and undrained triaxial shear strength tests were performed when fluctuating paces of 2 %, 4 %, 6 %, and 8 % of GSA were included to the soil specimens at optimum lime. The Atterberg limits tests showed a critical decrease in plasticity index for all the soil specimens when stabilized with lime. Compaction test showed a lessening in the maximum dry density from 1732 kg/m3 to 1651 kg/m3 for specimen I, 1874 kg/m3 to 1621 kg/m3 for specimen II and 1683 kg/m3 to 1655 kg/m3 for specimen III on stabilizing with lime, presentation of GSA to stabilized lime-soil decreases the maximum dry density for all the soil specimen with specimen I diminished to 1642 kg/m3, 1595 kg/m3, 1611 kg/m3 and 1611 kg/m3 at 2 %, 4 %, 6 % and 8 % GSA substances individually. Addition of GSA substances enhanced the engineering properties of laterite stabilized with lime as the unsoaked CBR values expanded for all the soil specimens. At optimum lime measurements, addition of 4 % GSA expanded the shear strength to 110.74 kN/m2 and 127.53 kN/m2 for specimens I and II individually while at 6 % GSA addition, the shear strength of specimen III was peak 118.24 kN/m2. The expansion in shear strength further affirms the improvement prior shown in the geotechnical properties of lateritic soil with the addition of groundnut shell ash. addition of 2 % GSA content extended the triaxial shear strength from 60.43kN/m2 to 188.36kN/m2 for specimen I, and at 4% GSA content, both soil specimens II and III expanded from 19.19kN/m2 to 201.48kN/m2 and 30.62kN/m2 to 111.65kN/m2 separately. Conclusively, GSA improved the durability and strength of lateritic soils stabilized with lime for civil structures.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
A. K. Lawer ◽  
S. I. K. Ampadu ◽  
F. Owusu-Nimo

AbstractWeak lateritic subgrades are more often than not encountered during road construction in Ghana. This makes it necessary to find economically efficient ways to improve the engineering properties of these marginal lateritic soils. The objective of this study is to investigate the effects of coconut fiber (30 mm, 60 mm and 90 mm fiber lengths) and palm fiber on some geotechnical characteristics of a weak lateritic subgrade. The lateritic soil was collected from the KNUST campus and blended with various percentages of the fibers varying between 0.1 and 1.0% by weight of dry soil. The mixed materials were then subjected to various laboratory tests including compaction, unconfined compression test and 4-day-soaked California bearing ratio test. From the results, it was observed that increasing the fiber content decreased the maximum dry density and increased the optimum moisture content. The inclusion of the fiber increased the soaked CBR from 7 to a maximum of 18, 22, and 25 at 30 mm, 60 mm and 90 mm fiber lengths, respectively. The unconfined compressive strength also increased from 140 to a maximum of 353 kPa, 398 kPa and 447 kPa, respectively, for 30 mm, 60 mm and 90 mm fiber lengths. Similarly, palm fiber inclusion recorded maximum soaked CBR value of 14% and UCS value of 352 kPa. These peak values were obtained at optimum fiber contents of 0.2%.


2021 ◽  
Vol 107 ◽  
pp. 85-96
Author(s):  
Joseph A. Ige

This study assessed the effect of potassium hydroxide on geotechnical properties of Biomass fuel ash stabilized lateritic soil. In-situ tests were conducted on the original soil sample for identification and classification purposes. The soil sample was classified as A-2-6. Thereafter, the soil sample was mixed with both Biomass fuel ash and Potassium hydroxide at percentages of 0, 5, 10, 15 and 0, 3, 6, 9 respectively. These were later subjected to various tests such as natural moisture content, specific gravity, sieve analysis, Atterberg limit and compaction .The result showed that the addition of Biomass fuel ash increases the Plastic limit but decreases the plasticity index of the lateritic soil. Similarly, the addition of potassium hydroxide increases the plastic limit while the plasticity index decreases.The addition of Biomass fuel ash increases the optimum moisture content while the maximum dry density decreases. Similarly, the addition of potassium hydroxide increases the optimum moisture content however the maximum dry density decreases. It could be concluded that both Biomass fuel ash and Potassium hydroxide perform satisfactorily as stabilizing agents for stabilizing lateritic soil especially for subgrade and sub base purposes in road construction


Sign in / Sign up

Export Citation Format

Share Document