scholarly journals The application of vibrational-rotational operation mode in vibratory drive

Author(s):  
L. A. Payuk ◽  
N. A. Voronina ◽  
I. A. Rozayev ◽  
Anara Daukenovna Umurzakova ◽  
Askar Tokishevich Zhumagazhinov

In this paper an analysis of the resultant flux linkage vector ψ0 of double-way feed motor (DFM) ​​in the vibrational-rotational mode is shown. It is used for vibration-based diagnostics of various equipment with AC drives. In the case of using DFM in the vibrational-rotational mode the accuracy of motion law implementation is higher than using the standart induction motor. The results of research obtained with the help of a mathematical model of the DFM that allows to explore the special operating modes such as oscillating, polyharmonical, vibrational-rotational and creeping speed ones. The urgency of DFM operational mode and its practical significance as a method of control for vibration-based diagnostics systems are also given herein. The influence of the load parameters on the dynamic parameters of the executive vibratory drive is shown.

2021 ◽  
Vol 264 ◽  
pp. 04063
Author(s):  
Tulkin Gayibov ◽  
Elnur Abdullaev

At present, one of the most important issues at the level of various manufacturing enterprises is the development of ways for building and efficiently using renewable energy sources, especially solar energy. In this regard, this article proposes a mathematical model of the problem of determining the optimal daily mode of operation of a photovoltaic system in an enterprise with a private photovoltaic system connected to the electrical system. The effectiveness of the mathematical model was analyzed on the example of determining the optimal mode of operation of the photovoltaic system located on the territory of Jizzakh Polytechnic Institute. It is shown that the mathematical model can be used to determine the optimal operating modes of existing photovoltaic systems in enterprises and distribution networks, as well as to determine the optimal parameters in their design.


2021 ◽  
Vol 4 (8(112)) ◽  
pp. 67-82
Author(s):  
Volodymyr Chenchevoi ◽  
Valeriy Kuznetsov ◽  
Vitaliy Kuznetsov ◽  
Olga Chencheva ◽  
Iurii Zachepa ◽  
...  

The paper presents studies of the system "induction generator-induction motor" with parametric asymmetry on a mathematical model to determine the quality of generated electricity in load operating modes. A mathematical model of the "induction generator-induction motor" system has been developed taking into account losses in steel and parametric asymmetry. The analysis of the transient characteristics of an induction generator when a motor load is connected in symmetrical and asymmetrical modes of operation is carried out. The results of changes in the main characteristics of an induction motor at various degrees of parametric asymmetry in the generator are presented. The quality of the generated electricity was analyzed based on the calculations of the unbalance coefficients for each of the operating modes. The assessment of the thermal state in steady-state conditions was carried out using an equivalent thermal equivalent circuit. Thermal transients were investigated when starting an induction motor from an autonomous energy source based on an induction generator. On a thermal mathematical model, the study of the effect of the output voltage asymmetry on the heating of the connected induction motor was carried out. It is shown that the asymmetry of the output voltage of an induction generator reaches 3–10 % and causes overheating of the windings in excess of the permissible values. A regression model has been developed for studying the operating conditions of an induction motor when powered by an induction generator with an asymmetry of the stator windings. The use of the obtained equations will make it possible to determine the most rational combination of factors affecting the heating of the stator windings of induction machines, in which they will not overheat above the maximum permissible temperature values of the corresponding insulation classes


2012 ◽  
Vol 562-564 ◽  
pp. 1496-1500
Author(s):  
Qiang Li ◽  
Wei Chen ◽  
Ren He

To investigate the accuracy of modeling DC motor, the platform for measurement and calculation dynamic parameters is built by the Hardware-In-the-Loop(HIL) method based on dSPACE system. The running state of DC motor has to be changed with adjustment of PWM duty-cycle using ControlDesk software. Having got measurement and calculation parameters value of DC motor, we compare the test results with simulation value using the model of DC motor with cascade control in Matlab/Simulink software according to the classical mathematical model. It confirms the established model of DC motor accurately and reliability using new parameters, which provides the basis of more complex control algorithms and also indicates that the feasibility and generalization application value of measurement and calculation method for DC motor.


2021 ◽  
Vol 14 (1) ◽  
pp. 34-39
Author(s):  
D. A. Kuzmin ◽  
A. Yu. Kuz’michevskiy

The destruction of equipment metal by a brittle fracture mechanism is a probabilistic event at nuclear power plants (NPP). The calculation for resistance to brittle destruction is performed for NPP equipment exposed to neutron irradiation; for example, for a reactor plant such as a water-water energetic reactor (WWER), this is a reactor pressure vessel. The destruction of the reactor pressure vessel leads to a beyond design-basis accident, therefore, the determination of the probability of brittle destruction is an important task. The research method is probabilistic analysis of brittle destruction, which takes into account statistical data on residual defectiveness of equipment, experimental results of equipment fracture toughness and load for the main operating modes of NPP equipment. Residual defectiveness (a set of remaining defects in the equipment material that were not detected by non-destructive testing methods after manufacturing (operation), control and repair of the detected defects) is the most important characteristic of the equipment material that affects its strength and service life. A missed defect of a considerable size admitted into operation can reduce the bearing capacity and reduce the time of safe operation from the nominal design value down to zero; therefore, any forecast of the structure reliability without taking into account residual defectiveness will be incorrect. The application of the developed method is demonstrated on the example of an NPP reactor pressure vessel with a WWER-1000 reactor unit when using the maximum allowable operating loads, in the absence of load dispersion in different operating modes, and taking into account the actual values of the distributions of fracture toughness and residual defectiveness. The practical significance of the developed method lies in the possibility of obtaining values of the actual probability of destruction of NPP equipment in order to determine the reliability of equipment operation, as well as possible reliability margins for their subsequent optimization.


2014 ◽  
Vol 77 (1-2) ◽  
pp. 277-288 ◽  
Author(s):  
G. A. Leonov ◽  
N. V. Kuznetsov ◽  
M. A. Kiseleva ◽  
E. P. Solovyeva ◽  
A. M. Zaretskiy

2020 ◽  
Vol 1 (4) ◽  
pp. 46-60
Author(s):  
B.B. Kositsyn ◽  

Introduction. The use of the method of full-scale-mathematical modeling in “real time” opens up wide opportunities associated with the analysis of the modes of operation of the “man – vehicle – environment” system, as well as the study of the loading of units and assemblies of vehicles. The existing research complexes of full-scale mathematical modeling are suitable for obtaining most of the indicators usually determined by full-scale tests. The difference lies in the ability to fully control the course of virtual testing, recording any parameters of the vehicle movement, taking into account the “human factor”, as well as complete safety of the experiment. Purpose of research. The purpose of this work is to create a mathematical model of the dynam-ics of a wheeled vehicle, suitable for use in such a complex of full-scale mathematical modeling and assessment of the load of transmission units in conditions close to real operation. Methodology and methods. The proposed model is based on the existing model of the dynamics of a wheeled vehicle developed at Bauman Moscow State Technical University. Within the framework of the model, the dynamics of a vehicle is described as a plane motion of a rigid body in a horizontal plane. The principle of possible displacements is applied to determine the normal reac-tions of the bearing surface. The interaction of the wheel with the ground in the plane of the support base is described using an approach based on the “friction ellipse” concept. To enable the driver and operator of the full-scale mathematical modeling complex to drive a virtual vehicle in “real time” mode, the mathematical model is supplemented with a control system that communicates between the control parameter set by the driver by pressing the accelerator and brake pedals and the control actions of the vehicle's transmission units, such as: an electric machine, an internal combustion en-gine, a hydrodynamic retarder and a brake system. The article presents a block diagram of the de-veloped control algorithm, as well as approbation of the system's operation in a complex of full-scale mathematical modeling. Results and scientific novelty. A mathematical model of the dynamics of a wheeled vehicle was developed. It opens up wide possibilities for studying the modes of operation of the “driver-vehicle-environment” system in “real time”, using a complex of full-scale mathematical modeling. Practical significance. A mathematical model of the dynamics of a wheeled vehicle was devel-oped. It is supplemented with an algorithm for the distribution of traction / braking torques between the transmission units, which provide a connection between the driver's pressing on the accelerator / brake pedal and the control parameters of each of the units.


Author(s):  
R. Lunderstädt ◽  
K. Fiedler

In the paper to be presented diagnostic procedures on the basis of a gas path analysis are applied on a two-shaft jet engine. Starting from the mathematical model of the engine a filter-algorithm is used which delivers from actual measurement data the state of the engine for different working conditions. The procedure is proven for some examples and discussed in regard of its practical significance.


This paper shows the real implementation of fuzzy logic controller in an AC drive system (Induction motor Drive) under Solar PV array-based system. The switching of boost converter is controlled with help of fuzzy logic by taking inputs from solar PV array while For Inverter switching is done by using fuzzy logic controller by taking inputs from induction motor drive. Initially, 20 kW solar PV array is designed for feeding the 10Kw Induction motor drive with the help MATLAB/SIMULINK. The complete system gives reliable, smooth, efficient, lesser harmonic content level in the output.


Sign in / Sign up

Export Citation Format

Share Document