scholarly journals Mass Balance Reconciliation for Bilinear Systems: A Case Study of a Raw Mill Separator in a Typical Moroccan Cement Plant

2016 ◽  
Vol 6 (3) ◽  
pp. 1006-1009 ◽  
Author(s):  
S. Fellaou ◽  
T. Bounahmidi

Stream flow rates and their several compositions are measured in a typical cement raw mill separator. In order to simultaneously reconcile flow and composition measurements in this circuit, the component mass balances was included as constraints which contain the products of flow rate and composition variables in the data reconciliation problem. In this paper, the effectiveness of simultaneous procedures for bilinear data reconciliation is established, the numerical problem constraints were coded in MATLAB and a mass balance model is built. Moreover, based on the difference between the measured and reconciled data it was found that it performs optimally.

1999 ◽  
Vol 45 (151) ◽  
pp. 559-567 ◽  
Author(s):  
Rijan Bhakta Kayastha ◽  
Tetsuo Ohata ◽  
Yutaka Ageta

AbstractA mass-balance model based on the energy balance at the snow or ice surface is formulated, with particular attention paid to processes affecting absorption of radiation. The model is applied to a small glacier, Glacier AX010 in the Nepalese Himalaya, and tests of its mass-balance sensitivity to input and climatic parameters are carried out. Calculated and observed area-averaged mass balances of the glacier during summer 1978 (June-September) show good agreement, namely -0.44 and -0.46 m w.e., respectively.Results show the mass balance is strongly sensitive to snow or ice albedo, to the effects of screening by surrounding mountain walls, to areal variations in multiple reflection between clouds and the glacier surface, and to thin snow covers which alter the surface albedo. In tests of the sensitivity of the mass balance to seasonal values of climatic parameters, the mass balance is found to be strongly sensitive to summer air temperature and precipitation but only weakly sensitive to relative humidity.


2017 ◽  
Vol 24 (31) ◽  
pp. 24156-24166 ◽  
Author(s):  
Herve Plaisance ◽  
Pierre Mocho ◽  
Nicolas Sauvat ◽  
Jane Vignau-Laulhere ◽  
Katarzyna Raulin ◽  
...  

1999 ◽  
Vol 45 (151) ◽  
pp. 559-567 ◽  
Author(s):  
Rijan Bhakta Kayastha ◽  
Tetsuo Ohata ◽  
Yutaka Ageta

AbstractA mass-balance model based on the energy balance at the snow or ice surface is formulated, with particular attention paid to processes affecting absorption of radiation. The model is applied to a small glacier, Glacier AX010 in the Nepalese Himalaya, and tests of its mass-balance sensitivity to input and climatic parameters are carried out. Calculated and observed area-averaged mass balances of the glacier during summer 1978 (June-September) show good agreement, namely -0.44 and -0.46 m w.e., respectively.Results show the mass balance is strongly sensitive to snow or ice albedo, to the effects of screening by surrounding mountain walls, to areal variations in multiple reflection between clouds and the glacier surface, and to thin snow covers which alter the surface albedo. In tests of the sensitivity of the mass balance to seasonal values of climatic parameters, the mass balance is found to be strongly sensitive to summer air temperature and precipitation but only weakly sensitive to relative humidity.


2011 ◽  
Vol 57 (203) ◽  
pp. 431-440 ◽  
Author(s):  
L.A. Rasmussen ◽  
H. Conway ◽  
R.M. Krimmel ◽  
R. Hock

AbstractA mass-balance model using upper-air meteorological data for input was calibrated with surface mass balance measured mainly during 1977–78 at 67 sites on Columbia Glacier, Alaska, between 135 and 2645 m a.s.l. Root-mean-square error, model vs measured, is 1.0 m w.e. a−1, with r2 = 0.88. A remarkable result of the analysis was that both precipitation and the factor in the positive degree-day model used to estimate surface ablation were constant with altitude. The model was applied to reconstruct glacier-wide components of surface mass balance over 1948–2007. Surface ablation, 4 km3 ice eq. a−1 (ice equivalent), has changed little throughout the period. From 1948 until about 1981, when drastic retreat began, the surface mass balance was positive but changes in glacier geometry were small, so the positive balance was offset by calving, ∼0.9 km3 ice eq. a−1 . During retreat, volume loss of the glacier accounted for 92% of the iceberg production. Calving increased to ∼4.3 km3 ice eq. a−1 from 1982 to 1995, and after that until 2007 to ∼8.0 km3 ice eq. a−1, which was about twice the loss by surface ablation, whereas prior to retreat it was only about a quarter as much. Calving is calculated as the difference between glacier-wide surface mass balance and geodetically determined volume change.


Author(s):  
Linden B. Huhmann ◽  
Charles F. Harvey ◽  
Ana Navas-Acien ◽  
Joseph Graziano ◽  
Vesna Slavkovich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document