scholarly journals The genotype-specific laccase gene expression and lignin deposition patterns in apple root during Pythium ultimum infection

2021 ◽  
Vol 1 (0) ◽  
pp. 1-9
Author(s):  
Yanmin Zhu ◽  
◽  
Zhe Zhou ◽  
2012 ◽  
Vol 78 (16) ◽  
pp. 5845-5854 ◽  
Author(s):  
Yang Yang ◽  
Fangfang Fan ◽  
Rui Zhuo ◽  
Fuying Ma ◽  
Yangmin Gong ◽  
...  

ABSTRACTLaccase is a copper-containing polyphenol oxidase that has great potential in industrial and biotechnological applications. Previous research has suggested that fungal laccase may be involved in the defense against oxidative stress, but there is little direct evidence supporting this hypothesis, and the mechanism by which laccase protects cells from oxidative stress also remains unclear. Here, we report that the expression of the laccase gene from white rot fungus inPichia pastoriscan significantly enhance the resistance of yeast to H2O2-mediated oxidative stress. The expression of laccase in yeast was found to confer a strong ability to scavenge intracellular H2O2and to protect cells from lipid oxidative damage. The mechanism by which laccase gene expression increases resistance to oxidative stress was then investigated further. We found that laccase gene expression inPichia pastoriscould increase the level of glutathione-based antioxidative activity, including the intracellular glutathione levels and the enzymatic activity of glutathione peroxidase, glutathione reductase, and γ-glutamylcysteine synthetase. The transcription of the laccase gene inPichia pastoriswas found to be enhanced by the oxidative stress caused by exogenous H2O2. The stimulation of laccase gene expression in response to exogenous H2O2stress further contributed to the transcriptional induction of the genes involved in the glutathione-dependent antioxidative system, includingPpYAP1,PpGPX1,PpPMP20,PpGLR1, andPpGSH1. Taken together, these results suggest that the expression of the laccase gene inPichia pastoriscan enhance the resistance of yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system to protect the cell from oxidative damage.


2003 ◽  
Vol 69 (12) ◽  
pp. 7083-7090 ◽  
Author(s):  
Tania González ◽  
María C. Terrón ◽  
Ernesto J. Zapico ◽  
Alejandro Téllez ◽  
Susana Yagüe ◽  
...  

ABSTRACT Laccases produced by white rot fungi are involved in the degradation of lignin and a broad diversity of other natural and synthetic molecules, having a great potential for biotechnological applications. They are frequently encoded by gene families, as in the basidiomycete Trametes sp. strain I-62, from which the lcc1, lcc2, and lcc3 laccase genes have been cloned and sequenced. A multiplex reverse transcription-PCR method to simultaneously study the expression of these genes was developed in this study. The assay proved to be quick, simple, highly sensitive, and reproducible and is particularly valuable when numerous samples are to be analyzed and/or if the amount of initial mRNA is limited. It was used to analyze the effect of 3,4-dimethoxybenzyl alcohol (veratryl alcohol) and two of its isomers (2,5-dimethoxybenzyl alcohol and 3,5-dimethoxybenzyl alcohol) on differential laccase gene expression in Trametes sp. strain I-62. These aromatic compounds produced different induction patterns despite their chemical similarity. We found 2,5-dimethoxybenzyl alcohol to be the best inducer of laccase activity while also producing the highest increase in gene expression; 3,5-dimethoxybenzyl alcohol was the next best inducer. Transcript amounts of each gene fluctuated dramatically in the presence of these three inducers, while the total amounts of laccase mRNAs seemed to be modulated by a coordinated regulation of the different genes.


2008 ◽  
Vol 159 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Tania González ◽  
María Carmen Terrón ◽  
Susana Yagüe ◽  
Howard Junca ◽  
José María Carbajo ◽  
...  

2010 ◽  
Vol 114 (11-12) ◽  
pp. 999-1006 ◽  
Author(s):  
Mario Saparrat ◽  
Pedro A. Balatti ◽  
María Jesús Martínez ◽  
Miguel Jurado

Molecules ◽  
2015 ◽  
Vol 20 (8) ◽  
pp. 15147-15157 ◽  
Author(s):  
Raúl Tapia-Tussell ◽  
Daisy Pérez-Brito ◽  
Claudia Torres-Calzada ◽  
Alberto Cortés-Velázquez ◽  
Liliana Alzate-Gaviria ◽  
...  

2001 ◽  
Vol 91 (9) ◽  
pp. 873-881 ◽  
Author(s):  
R. Notz ◽  
M. Maurhofer ◽  
U. Schnider-Keel ◽  
B. Duffy ◽  
D. Haas ◽  
...  

Production of the polyketide antimicrobial metabolite 2,4-diacetyl-phloroglucinol (DAPG) is a key factor in the biocontrol activity of Pseudomonas fluorescens CHA0. Strain CHA0 carrying a translational phlA′-′lacZ fusion was used to monitor expression of the phl biosynthetic genes in vitro and in the rhizosphere. Expression of the reporter gene accurately reflected actual production of DAPG in vitro and in planta as determined by direct extraction of the antimicrobial compound. In a gnotobiotic system containing a clay and sand-based artificial soil, reporter gene expression was significantly greater in the rhizospheres of two monocots (maize and wheat) compared with gene expression in the rhizospheres of two dicots (bean and cucumber). We observed this host genotype effect on bacterial gene expression also at the level of cultivars. Significant differences were found among six additional maize cultivars tested under gnotobiotic conditions. There was no difference between transgenic maize expressing the Bacillus thuringiensis insecticidal gene cry1Ab and the near-isogenic parent line. Plant age had a significant impact on gene expression. Using maize as a model, expression of the phlA′-′lacZ reporter gene peaked at 24 h after planting of pregerminated seedlings, and dropped to a fourth of that value within 48 h, remaining at that level throughout 22 days of plant growth. Root infection by Pythium ultimum stimulated bacterial gene expression on both cucumber and maize, and this was independent of differences in rhizosphere colonization on these host plants. To our knowledge, this is the first comprehensive evaluation of how biotic factors that commonly confront bacterial inoculants in agricultural systems (host genotype, host age, and pathogen infection) modulate the expression of key biocontrol genes for disease suppression.


Sign in / Sign up

Export Citation Format

Share Document