phenylalanine ammonialyase
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
pp. 947-954
Author(s):  
D. Ayvaz Sönmez ◽  
I. Ürün ◽  
D. Alagöz ◽  
Ş.H. Attar ◽  
Z. Doğu ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1399
Author(s):  
Zuying Zhang ◽  
Changtao Li ◽  
Hui Zhang ◽  
Yeqing Ying ◽  
Yuanyuan Hu ◽  
...  

Two types of bamboo shoots, high bamboo (Phyllostachys prominens) shoots (HBSes) and moso bamboo (Phyllostachys edulis) shoots (MBSes), underwent a fast post-harvest lignification process under room temperature storage. To explore the mechanism of lignification in two types of bamboo shoots after post-harvest during room temperature storage, the measurement of cell wall polymers (lignin and cellulose) and enzyme activities of phenylalanine ammonialyase (PAL) and peroxidase (POD), and relative expression of related transcription networks factors (TFs) were performed. The results suggested that the lignification process in HBSes is faster than that in MBSes because of incremental increase in lignin and cellulose contents within 6 days and the shorter shelf-life. Additionally, compared with the expression pattern of lignification-related TFs and correlation analysis of lignin and cellulose contents, MYB20, MYB43, MYB85 could function positively in the lignification process of two types of bamboo shoots. A negative regulator, KNAT7, could negatively regulate the lignin biosynthesis in two types of bamboo shoots. In addition, MYB63 could function positively in HBSes, and NST1 could function negatively in MBSes. Notably, MYB42 may function differently in the two types of bamboo shoots, that is, a positive regulator in HBSes, but a negative regulator in MBSes. Transcription networks provide a comprehensive analysis to explore the mechanism of lignification in two types of bamboo shoots after post-harvest during room temperature storage. These results suggest that the lignification of bamboo shoots was mainly due to the increased activity of POD, higher expression levels of MYB20, MYB43, MYB63, and MYB85 genes, and lower expression levels of KNAT7 and NST1 genes, and the lignification process of HBSes and MBSes had significant differences.


2020 ◽  
Vol 12 (4) ◽  
pp. 26-35
Author(s):  
Xiao Gong ◽  
Xianshao Wu ◽  
Ningli Qi ◽  
Jihua Li ◽  
Yujia Huo

In order to determine the best shelf life of the atemoya, the changes in the biochemical characteristics in five different stages of senescence were investigated. During postharvest ripening at room temperature, the firmness decreased rapidly after harvest and the fruit weight loss and browning degree increased from the earliest green-colored stage onward. The total soluble solid concentrations (TSSC) and titratable acidity (TA) increased continuously throughout maturation, and the peak respiratory and ethylene production rates occurred on the 3d and 5th day of postharvest, respectively. Phenylalanine ammonialyase (PAL) activity steadily increased, catalase and polyphenol oxidase (PPO) activities decreased significantly on the 1st day and then gradually increased, and peroxidase activities increased during the initial 3 days, and then decreased at later stages. The volatile fingerprints of flesh samples from the five senescence stages were successfully established using gas chromatography-ion mobility spectrometry (GC-IMS) combined with principal component analysis, and 32 typical target compounds and 35 indeterminate compounds were obtained. The results provide a theoretical basis for the development of innovative preservation methods for atemoya.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 186 ◽  
Author(s):  
Wei-Qin Gao ◽  
Li-Hui Lü ◽  
A. Srivastava ◽  
Qiang-Sheng Wu ◽  
Kamil Kuča

A potted experiment was carried out to evaluate the effect of an arbuscular mycorrhizal fungus (AMF), Acaulospora scrobiculata, on peach seedlings grown in non-replant (NR) and replant (R) soils, to establish whether AMF inoculation alleviated soil replant disease through changes in physiological levels and relevant gene expression. After 15 weeks of mycorrhization, root mycorrhizal colonization was heavily inhibited by R treatment versus NR treatment. AMF plants under NR and R soil conditions displayed significantly higher total plant biomass than non-AMF plants. AMF inoculation significantly increased root sucrose and fructose concentrations and root catalase, peroxidase, polyphenol oxidase, and phenylalanine ammonialyase activities under R conditions. Likewise, salicylic acid, jasmonic acid, chitinase, total soluble phenol, and lignin concentrations in roots were significantly higher in AMF than in non-AMF seedlings grown in R soil. Over-expression of PpCHI, PpLOX1, PpLOX5, PpAOC3, PpAOC4, and PpOPR2 in roots was observed in AMF-inoculated seedlings, as compared to that of non-AMF-inoculated seedlings grown in R soils. Thus, mycorrhizal fungal inoculation conferred a greater tolerance to peach plants in R soil by stimulating antioxidant enzyme activities, disease-resistance substance levels, and the expression of relevant genes.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Fang Liu ◽  
Qian Zhao ◽  
Zhenhua Jia ◽  
Cong Song ◽  
Yali Huang ◽  
...  

Abstract Backgroud Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) to communicate each other and to coordinate their collective behaviors. Recently, accumulating evidence shows that host plants are able to sense and respond to bacterial AHLs. Once primed, plants are in an altered state that enables plant cells to more quickly and/or strongly respond to subsequent pathogen infection or abiotic stress. Results In this study, we report that pretreatment with N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) confers resistance against the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (PstDC3000) in Arabidopsis. Pretreatment with 3OC8-HSL and subsequent pathogen invasion triggered an augmented burst of hydrogen peroxide, salicylic acid accumulation, and fortified expression of the pathogenesis-related genes PR1 and PR5. Upon PstDC3000 challenge, plants treated with 3OC8-HSL showed increased activities of defense-related enzymes including peroxidase, catalase, phenylalanine ammonialyase, and superoxide dismutase. In addition, the 3OC8-HSL-primed resistance to PstDC3000 in wild-type plants was impaired in plants expressing the bacterial NahG gene and in the npr1 mutant. Moreover, the expression levels of isochorismate synthases (ICS1), a critical salicylic acid biosynthesis enzyme, and two regulators of its expression, SARD1 and CBP60g, were potentiated by 3OC8-HSL pretreatment followed by pathogen inoculation. Conclusions Our data indicate that 3OC8-HSL primes the Arabidopsis defense response upon hemibiotrophic bacterial infection and that 3OC8-HSL-primed resistance is dependent on the SA signaling pathway. These findings may help establish a novel strategy for the control of plant disease.


Author(s):  
Fang Liu ◽  
Qian Zhao ◽  
Zhenhua Jia ◽  
Cong Song ◽  
Yali Huang ◽  
...  

Abstract Background: Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) to communicate each other and to coordinate their collective behaviors. Recently, accumulating evidence shows that host plants are able to sense and respond to bacterial AHLs. Once primed, plants are in an altered state that enables plant cells to more quickly and/or strongly respond to subsequent pathogen infection or abiotic stress. Results: In this study, we report that pretreatment with N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) confers resistance against the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (PstDC3000) in Arabidopsis. Pretreatment with 3OC8-HSL and subsequent pathogen invasion triggered an augmented burst of hydrogen peroxide, salicylic acid accumulation, and fortified expression of the pathogenesis-related genes PR1 and PR5. Upon PstDC3000 challenge, plants treated with 3OC8-HSL showed increased activities of defense-related enzymes including peroxidase, catalase, phenylalanine ammonialyase, and superoxide dismutase. In addition, the 3OC8-HSL-primed resistance to PstDC3000 in wild-type plants was impaired in plants expressing the bacterial NahG gene and in the npr1 mutant. Moreover, the expression levels of isochorismate synthases (ICS1), a critical salicylic acid biosynthesis enzyme, and two regulators of its expression, SARD1 and CBP60g, were potentiated by 3OC8-HSL pretreatment followed by pathogen inoculation. Conclusions: Our data indicate that 3OC8-HSL primes the Arabidopsis defense response upon hemibiotrophic bacterial infection and that 3OC8-HSL-primed resistance is dependent on the SA signaling pathway. These findings may help establish a novel strategy for the control of plant disease.


2019 ◽  
Author(s):  
Fang Liu ◽  
Qian Zhao ◽  
Zhenhua Jia ◽  
Cong Song ◽  
Yali Huang ◽  
...  

Abstract Backgroud: Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) to communicate each other and to coordinate their collective behaviors. Recently, accumulating evidence shows that host plants are able to sense and respond to bacterial AHLs. Once primed, plants are in an altered state that enables plant cells to more quickly and/or strongly respond to subsequent pathogen infection or abiotic stress. Results: In this study, we report that pretreatment with N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) confers resistance against the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (PstDC3000) in Arabidopsis. Pretreatment with 3OC8-HSL and subsequent pathogen invasion triggered an augmented burst of hydrogen peroxide, salicylic acid accumulation, and fortified expression of the pathogenesis-related genes PR1 and PR5. Upon PstDC3000 challenge, plants treated with 3OC8-HSL showed increased activities of defense-related enzymes including peroxidase, catalase, phenylalanine ammonialyase, and superoxide dismutase. In addition, the 3OC8-HSL-primed resistance to PstDC3000 in wild-type plants was impaired in plants expressing the bacterial NahG gene and in the npr1 mutant. Moreover, the expression levels of isochorismate synthases (ICS1), a critical salicylic acid biosynthesis enzyme, and two regulators of its expression, SARD1 and CBP60g, were potentiated by 3OC8-HSL pretreatment followed by pathogen inoculation. Conclusions: Our data indicate that 3OC8-HSL primes the Arabidopsis defense response upon hemibiotrophic bacterial infection and that 3OC8-HSL-primed resistance is dependent on the SA signaling pathway. These findings may help establish a novel strategy for the control of plant disease.


2018 ◽  
Vol 44 (3) ◽  
pp. 289-298
Author(s):  
Bao-Jun Zhu ◽  
Qian Wang ◽  
Jing-Hui Wang ◽  
Lin-Lin Gao ◽  
Jing-Wen Zhang ◽  
...  

Abstract Objectives Rhodomyrtus tomentosa (Aiton.) Hassk. (R. tomentosa) is rich in nutrients and has multiple pharmacological applications. Anthocyanins confer color to the flowers and berries of R. tomentosa and provide protection against photodamage. The dihydroflavonol 4-reductase gene (DFR) and phenylalanine ammonialyase gene (PAL) are crucial for anthocyanin synthesis. Methods DFR and PAL transcript levels and anthocyanin content in the pigmented organs of R. tomentosa were investigated through qRT-PCR analysis and spectrophotometry, respectively. The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was selected as the reference gene for the normalization of DFR and PAL transcript levels. Results Transcript levels of DFR and PAL were higher in organs with vigorous metabolism than those in senescent organs. DFR and PAL transcript levels were up-regulated during the initial and middle-maturity periods of fruit. These expression patterns are consistent with fruit color development. The highest transcript levels of PAL and DFR were observed during the middle-maturity period or the red-fruit period. Conclusion During the late maturity period of R. tomentosa fruit, the transcript levels of the two genes were down-regulated even though anthocyanins were continuously accumulated, which was different from the accumulation of anthocyanins in some late mature fruits.


Sign in / Sign up

Export Citation Format

Share Document