scholarly journals Survival Analysis of Python and R within the Job Market Trend

2020 ◽  
Vol 1 (1) ◽  
pp. 31-40
Author(s):  
Hina Afzal ◽  
Arisha Kamran ◽  
Asifa Noreen

The market nowadays, due to the rapid changes happening in the technologies requires a high level of interaction between the educators and the fresher coming to going the market. The demand for IT-related jobs in the market is higher than all other fields, In this paper, we are going to discuss the survival analysis in the market of parallel two programming languages Python and R . Data sets are growing large and the traditional methods are not capable enough of handling the large data sets, therefore, we tried to use the latest data mining techniques through python and R programming language. It took several months of effort to gather such an amount of data and process it with the data mining techniques using python and R but the results showed that both languages have the same rate of growth over the past years.

Author(s):  
Ratchakoon Pruengkarn ◽  
◽  
Kok Wai Wong ◽  
Chun Che Fung

Data mining is the analytics and knowledge discovery process of analyzing large volumes of data from various sources and transforming the data into useful information. Various disciplines have contributed to its development and is becoming increasingly important in the scientific and industrial world. This article presents a review of data mining techniques and applications from 1996 to 2016. Techniques are divided into two main categories: predictive methods and descriptive methods. Due to the huge number of publications available on this topic, only a selected number are used in this review to highlight the developments of the past 20 years. Applications are included to provide some insights into how each data mining technique has evolved over the last two decades. Recent research trends focus more on large data sets and big data. Recently there have also been more applications in area of health informatics with the advent of newer algorithms.


2021 ◽  
pp. 1826-1839
Author(s):  
Sandeep Adhikari, Dr. Sunita Chaudhary

The exponential growth in the use of computers over networks, as well as the proliferation of applications that operate on different platforms, has drawn attention to network security. This paradigm takes advantage of security flaws in all operating systems that are both technically difficult and costly to fix. As a result, intrusion is used as a key to worldwide a computer resource's credibility, availability, and confidentiality. The Intrusion Detection System (IDS) is critical in detecting network anomalies and attacks. In this paper, the data mining principle is combined with IDS to efficiently and quickly identify important, secret data of interest to the user. The proposed algorithm addresses four issues: data classification, high levels of human interaction, lack of labeled data, and the effectiveness of distributed denial of service attacks. We're also working on a decision tree classifier that has a variety of parameters. The previous algorithm classified IDS up to 90% of the time and was not appropriate for large data sets. Our proposed algorithm was designed to accurately classify large data sets. Aside from that, we quantify a few more decision tree classifier parameters.


Author(s):  
Scott Nicholson ◽  
Jeffrey Stanton

Most people think of a library as the little brick building in the heart of their community or the big brick building in the center of a campus. These notions greatly oversimplify the world of libraries, however. Most large commercial organizations have dedicated in-house library operations, as do schools, non-governmental organizations, as well as local, state, and federal governments. With the increasing use of the Internet and the World Wide Web, digital libraries have burgeoned, and these serve a huge variety of different user audiences. With this expanded view of libraries, two key insights arise. First, libraries are typically embedded within larger institutions. Corporate libraries serve their corporations, academic libraries serve their universities, and public libraries serve taxpaying communities who elect overseeing representatives. Second, libraries play a pivotal role within their institutions as repositories and providers of information resources. In the provider role, libraries represent in microcosm the intellectual and learning activities of the people who comprise the institution. This fact provides the basis for the strategic importance of library data mining: By ascertaining what users are seeking, bibliomining can reveal insights that have meaning in the context of the library’s host institution. Use of data mining to examine library data might be aptly termed bibliomining. With widespread adoption of computerized catalogs and search facilities over the past quarter century, library and information scientists have often used bibliometric methods (e.g., the discovery of patterns in authorship and citation within a field) to explore patterns in bibliographic information. During the same period, various researchers have developed and tested data mining techniques—advanced statistical and visualization methods to locate non-trivial patterns in large data sets. Bibliomining refers to the use of these bibliometric and data mining techniques to explore the enormous quantities of data generated by the typical automated library.


Author(s):  
A. Adelmann ◽  
R.D. Ryne ◽  
J.M. Shalf ◽  
C. Siegerist

2014 ◽  
Vol 644-650 ◽  
pp. 2120-2123 ◽  
Author(s):  
De Zhi An ◽  
Guang Li Wu ◽  
Jun Lu

At present there are many data mining methods. This paper studies the application of rough set method in data mining, mainly on the application of attribute reduction algorithm based on rough set in the data mining rules extraction stage. Rough set in data mining is often used for reduction of knowledge, and thus for the rule extraction. Attribute reduction is one of the core research contents of rough set theory. In this paper, the traditional attribute reduction algorithm based on rough sets is studied and improved, and for large data sets of data mining, a new attribute reduction algorithm is proposed.


2021 ◽  
Author(s):  
Rohit Ravindra Nikam ◽  
Rekha Shahapurkar

Data mining is a technique that explores the necessary data is extracted from large data sets. Privacy protection of data mining is about hiding the sensitive information or identity of breach security or without losing data usability. Sensitive data contains confidential information about individuals, businesses, and governments who must not agree upon before sharing or publishing his privacy data. Conserving data mining privacy has become a critical research area. Various evaluation metrics such as performance in terms of time efficiency, data utility, and degree of complexity or resistance to data mining techniques are used to estimate the privacy preservation of data mining techniques. Social media and smart phones produce tons of data every minute. To decision making, the voluminous data produced from the different sources can be processed and analyzed. But data analytics are vulnerable to breaches of privacy. One of the data analytics frameworks is recommendation systems commonly used by e-commerce sites such as Amazon, Flip Kart to recommend items to customers based on their purchasing habits that lead to characterized. This paper presents various techniques of privacy conservation, such as data anonymization, data randomization, generalization, data permutation, etc. such techniques which existing researchers use. We also analyze the gap between various processes and privacy preservation methods and illustrate how to overcome such issues with new innovative methods. Finally, our research describes the outcome summary of the entire literature.


Author(s):  
Md. Zakir Hossain ◽  
Md.Nasim Akhtar ◽  
R.B. Ahmad ◽  
Mostafijur Rahman

<span>Data mining is the process of finding structure of data from large data sets. With this process, the decision makers can make a particular decision for further development of the real-world problems. Several data clusteringtechniques are used in data mining for finding a specific pattern of data. The K-means method isone of the familiar clustering techniques for clustering large data sets.  The K-means clustering method partitions the data set based on the assumption that the number of clusters are fixed.The main problem of this method is that if the number of clusters is to be chosen small then there is a higher probability of adding dissimilar items into the same group. On the other hand, if the number of clusters is chosen to be high, then there is a higher chance of adding similar items in the different groups. In this paper, we address this issue by proposing a new K-Means clustering algorithm. The proposed method performs data clustering dynamically. The proposed method initially calculates a threshold value as a centroid of K-Means and based on this value the number of clusters are formed. At each iteration of K-Means, if the Euclidian distance between two points is less than or equal to the threshold value, then these two data points will be in the same group. Otherwise, the proposed method will create a new cluster with the dissimilar data point. The results show that the proposed method outperforms the original K-Means method.</span>


Sign in / Sign up

Export Citation Format

Share Document